

REPORT

то

ABC TISSUE PRODUCTS PTY LTD C/- C.I.R. CONSTRUCTION PTY LTD

ON

STAGE 2 ENVIRONMENTAL SITE ASSESSMENT

FOR

PROPOSED NEW WAREHOUSE

AT

58-62 REDFERN STREET, WETHERILL PARK, NSW

REF: E29923K2rpt

10 MAY 2017

Document Distribution Record		
Report Reference	Distribution	Report Date
E29923K2rpt	Client	10/5/2017

Report prepared by:

Jake Callman

Jake Cashman Environmental Scientist

Report reviewed by:

Adrian Kingswell Principal Environmental Scientist

© Document Copyright of Environmental Investigation Services (EIS)

This Report (which includes all attachments and annexures) has been prepared by EIS for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between EIS and the Client and is therefore subject to:

- a) EIS proposal in respect of the work covered by the Report;
- b) The limitations defined in the client's brief to EIS; and
- c) The terms of contract between EIS and the Client, including terms limiting the liability of EIS.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of EIS which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of EIS does so entirely at their own risk and to the fullest extent permitted by law, EIS accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

EXECUTIVE SUMMARY

ABC Tissue Products Pty Ltd ('the client') commissioned Environmental Investigation Services (EIS) to undertake a Stage 2 Environmental Site Assessment (ESA) for the proposed new warehouse at 58-62 Redfern Street, Wetherill Park, NSW. The site location is shown on Figure 1 and the assessment was confined to the site boundaries as shown on Figure 2.

EIS understand that the proposed development will include demolition of the existing warehouse and existing structures and construction of a new high rack warehouse with internal concrete slab.

Samples for this investigation were obtained from 17 sampling points plus 10 sampling points in the stage 1 ESA. This meets the minimum sampling density recommended by the EPA for an area of approximately $16,430m^2$. Three monitoring well were installed in selected boreholes across the site. The standing water level in the monitoring wells ranged from 3.22-4.57mbgl on the 12/4/2017.

Asphaltic concrete or concrete pavement was encountered in all boreholes at 110mm to 300mm in depth. Fill material extended to depths of approximately 0.3m to 4.2m. The fill contained inclusions of: ash; slag; organic material; ironstone; igneous and shale gravel.

The natural soil typically consisted of silty clay of various colours. The clay contained inclusions of ironstone gravel. The natural soil extended to a maximum depth of approximately 4.7m in BH 306. Shale bedrock was encountered in the majority of the boreholes at depths ranging from approximately 0.3m to 4.4m.

The fill material at the site is classified as General Solid Waste (non-putrescible) (GSW). The fill material is considered to be suitable for re-use on the subject site (only) provided it meets geotechnical and earthwork requirements or it can be de disposed of to a NSW EPA landfill licensed to receive the waste stream. The natural silty clay and shale bedrock is classified as Virgin excavated natural material (VENM).

The soil results encountered were below the adopted human health and ecological guidelines. The groundwater results encountered various heavy metals above the GIL-ANZECC criteria however, these results are not considered to be significant. The remaining groundwater results were below the adopted criteria.

The site is considered to be suitable for the proposed development and further investigation is not required.

In the event unexpected conditions are encountered during development work or between sampling locations that may pose a contamination risk, all works should stop and an environmental consultant should be engaged to inspect the site and address the issue.

The conclusions and recommendations should be read in conjunction with the limitations presented in the body of the report.

TABLE OF CONTENTS

1	INTRODUC	TION	1
	1.1	Proposed Development Details	1
	1.2	Background	1
	1.3	Aim and Objectives	2
	1.4	Scope of Work	2
2	SITE INFOR	MATION	4
	2.1	Site Identification	4
	2.2	Site Location and Regional Setting	4
	2.3	Topography	4
	2.4	Site Inspection	4
	2.5	Surrounding Land Use	5
	2.6	Underground Services	6
	2.7	Section 149 Planning Certificate	6
3	GEOLOGY	AND HYDROGEOLOGY	7
	3.1	Regional Geology	7
	3.2	Acid Sulfate Soil Risk and Planning	7
	3.3	Hydrogeology	7
	3.4	Receiving Water Bodies	7
4	SITE HISTO	RY INFORMATION	8
	4.1	Review of Historical Aerial Photographs	8
	4.2	Review of Historical Land Title Records	9
	4.3	SafeWork NSW Records	9
	4.4	NSW EPA Records	9
	4.5	Historical Business Directory and Additional Lotsearch Information	10
	4.6	Summary of Site History Information	11
	4.7	Integrity of Site History Information	11
5	CONCEPTU	AL SITE MODEL	12
	5.1	Potential Contamination Sources/AEC and CoPC	12
	5.2	Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways	13
6	SAMPLING	, ANALYSIS AND QUALITY PLAN	15
	6.1	Data Quality Objectives (DQO)	15
	6.2	Soil Sampling Plan and Methodology	17
	6.3	Groundwater Sampling Plan and Methodology	20
	6.4	Analytical Schedule	21
7	SITE ASSES	SMENT CRITERIA (SAC)	23
8	INVESTIGA	TION RESULTS	26
	8.1	Subsurface Conditions	26
	8.2	Field Screening	26
	8.3	Soil Laboratory Results	27
	8.4	Groundwater Laboratory Results	29
9	DATA QUA	LITY ASSESSMENT	31
10	WASTE CLA	ASSIFICATION OF SOIL FOR OFF-SITE DISPOSAL	34
11	1 TIER 1 RISK ASSESSMENT AND REVIEW OF PCSM 35		
12	CONCLUSIO	N	36
	12.1	Regulatory Requirement	36
13			37
LIST OF	In-Text Tabl	es	

Important Information About The Site Assessment Report

<u>REPORT FIGURES:</u> Figure 1: Site Location Plan Figure 2: Sample Location Plan

TABLE OF CONTENTS

LABORATORY SUMMARY TABLES:

Table A: Soil Laboratory Results Compared to HILs

Table B: Soil Laboratory Results Compared to HSLs

Table C Soil Laboratory Results Compared to EILs and ESLs

Table D: Soil Laboratory Results Compared to Waste Classification Guidelines

Table E:Summary of Laboratory TCLP ResultsTable F:Groundwater Laboratory Results

Table G: Groundwater Laboratory Results Compared to HSLs

Table H (a) and (b): Soil Intra-Laboratory Duplicate Results & RPD Calculations

Table I: Soil Inter-Laboratory Duplicate Results & RPD Calculations

Table J: Groundwater Intra-Laboratory Duplicate Results & RPD Calculations

Table K: Summary of QA/QC – Trip Spike and Trip Blank Results

APPENDICES:

Appendix A: Site Information including Site History

Appendix B: Borehole Logs

Appendix C: Laboratory Report/s & COC Documents

Appendix D: Report Explanatory Notes

Appendix E: Field Work Documents

ABBREVIATIONS

Ambient Background Concentrations	ABC
Added Contaminant Limits	ACL
Asbestos Containing Material	ACM ADWG
Australian Drinking Water Guidelines Area of Environmental Concern	ADWG
	ALC
Australian Height Datum Asbestos Health Screening Levels	AND
Acid Sulfate Soil	ASE
Above-Ground Storage Tank	AST
Below Ground Level	BGL
Bureau of Meteorology	BOM
Benzene, Toluene, Ethylbenzene, Xylene	BTEX
Benzene, Toluene, Ethylbenzene, Xylene, Naphthalene	BTEXN
Cation Exchange Capacity	CEC
Contaminated Land Management	CLM
Construction Management Plan	СМР
Contaminant(s) of Potential Concern	CoPC
Chain of Custody	сос
Conceptual Site Model	CSM
Data Quality Indicator	DQI
Data Quality Objective	DQO
Detailed Site Investigation	DSI
Ecological Assessment Criteria	EAC
Ecological Investigation Levels	EILs
Ecological Screening Level	ESL
Environmental Management Plan	EMP
Excavated Natural Material	ENM
Environmental Protection Agency	EPA
Environmental Site Assessment	ESA
Ecological Screening Level	ESL
Fibre Cement Fragments	FCF
General Approvals of Immobilisation General Solid Waste	GAI GSW
Health Investigation Level	HILS
Hardness Modified Trigger Values	HMTV
Health Screening Level	HSLs
International Organisation of Standardisation	ISO
Lab Control Spike	LCS
Light Non-Aqueous Phase Liquid	LNAPL
Local Government Authority	LGA
Map Grid of Australia	MGA
National Association of Testing Authorities	NATA
National Environmental Protection Measure	NEPM
Organochlorine Pesticides	ОСР
Organophosphate Pesticides	OPP
Polycyclic Aromatic Hydrocarbons	PAH
Photo-ionisation Detector	PID

ABBREVIATIONS

Desisting Consultation Linet	
Practical Quantitation Limit	PQL
Preliminary Site Investigation	PSI
Quality Assurance	QA
Quality Control	QC
Remediation Action Plan	RAP
Relative Percentage Difference	RPD
Restricted Solid Waste	RSW
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
Site Audit Statement	SAS
Site Audit Report	SAR
Specific Contamination Concentration	SCC
Standard Penetration Test	SPT
Semi-Volatile Organic Compounds	sVOC
Standard Sampling Procedure	SSP
Standard Water Level	SWL
Standard Sampling Procedure	SSP
Trip Blank	ТВ
Toxicity Characteristic Leaching Procedure	TCLP
Total Recoverable Hydrocarbons	TRH
Trip Spike	TS
Upper Confidence Limit	UCL
United States Environmental Protection Agency	USEPA
Underground Storage Tank	UST
Virgin Excavated Natural Material	VENM
Volatile Organic Compounds	VOC
Work Health and Safety	WHS

1 INTRODUCTION

ABC Tissue Products Pty Ltd ('the client') commissioned Environmental Investigation Services (EIS)¹ to undertake a Stage 2 Environmental Site Assessment (ESA) for the proposed new warehouse at 58-62 Redfern Street, Wetherill Park, NSW. The site location is shown on Figure 1 and the assessment was confined to the site boundaries as shown on Figure 2.

This report supersedes the existing stage 1 ESA and addendum letter previously prepared by EIS for the site.

1.1 <u>Proposed Development Details</u>

EIS understand that the development will include demolition of the existing warehouse and existing structures and construction of a new high rack warehouse with internal concrete slab. We have assumed that development levels will be similar or close to existing ground surface with minimal excavation or filling being proposed.

1.2 Background

JK Geotechnics have previously undertaken a geotechnical investigation on the site (Reference: 28595V, dated 14 August 2015). The investigation included drilling of eight shallow boreholes. The investigation encountered odorous natural soils in BH3. The source and nature of the odour were not identified.

EIS have previously undertaken a Preliminary Stage 1 Environmental Site Assessment (ESA) at the site (Report reference: E29923Krpt, dated 19 December 2016). The report included a detailed site history review and a preliminary assessment of the soil contamination based on sampling from ten boreholes. A review of the Stage 1 ESA identified that the following data gaps remained on the site after the investigation:

- The areas beneath the existing buildings were not included in the original assessment;
- The presence of hazardous building materials in the existing buildings had not been assessed;
- The EPA minimum sampling density had not been met; and
- No groundwater or soil vapour assessment had been undertaken.

The purpose of the stage 2 ESA was to adopt the recommendations of the stage 1 ESA and target the odorous soil encountered in BH3 during the geotechnical investigation.

The hazardous building materials assessment has been completed on the site (Reference: E29923K, dated 27 April 2017).

¹ Environmental consulting division of Jeffery & Katauskas Pty Ltd (J&K)

1.3 <u>Aim and Objectives</u>

The primary aims of the assessment were review the potentially contaminating activities at the site, identify the potential for site contamination, and make a preliminary assessment of the soil and groundwater contamination conditions. The assessment objectives were to:

- Assess the current site conditions and use via a site walkover inspection;
- Assess the soil and groundwater contamination conditions via implementation of a preliminary sampling and analysis program;
- Update the conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Provide a preliminary waste classification for off-site disposal of soil;
- Assess whether further intrusive investigation and/or remediation is required; and
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint).

1.4 <u>Scope of Work</u>

The assessment was undertaken generally in accordance with an EIS proposal (Ref: EP44551K) of 16 March 2017 and written acceptance from the client of 21 March 2017. The scope of work included the following:

- Review of Stage 1 ESA;
- A walkover site inspection;
- Design and implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted site assessment criteria (SAC);
- Assessment of data quality; and
- Preparation of an ESA report presenting the results of the assessment, including a CSM and Tier 1 risk assessment.

The report was prepared with reference to regulations/guidelines outlined in the table below. Individual guidelines are also referenced within the text of the report.

Table 1-1: Guidelines

Guidelines/Regulations/Documents		
Contaminated Land Management Act (1997) ²		
Chata Environmental Diamina Dalias No. 55 - Demodiation of Land (1000)3		
State Environmental Planning Policy No.55 – Remediation of Land (1998) ³		

Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land (1998)⁴

² NSW Government Legislation, (1997). *Contaminated Land Management Act 1997*. (referred to as CLM Act 1997)

³ NSW Government, (1998). State Environmental Planning Policy No. 55 – Remediation of Land. (referred to as SEPP55)

⁴ Department of Urban Affairs and Planning, and Environment Protection Authority, (1998). *Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land*. (SEPP55 Planning Guidelines)

Guidelines/Regulations/Documents

Guidelines for Consultants Reporting on Contaminated Sites (2011)⁵

Guidelines for the NSW Site Auditor Scheme, 2nd Edition (2006)⁶

National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013)⁷

⁵ NSW Office of Environment and Heritage (OEH), (2011). *Guidelines for Consultants Reporting on Contaminated Sites*. (referred to as Reporting Guidelines 2011)

⁶ NSW DEC, (2006). *Guidelines for the NSW Site Auditor Scheme, 2nd ed.* (referred to as Site Auditor Guidelines 2006)

⁷ National Environment Protection Council, (2013). *National Environmental Protection (Assessment of Site Contamination) Amendment Measure 1999* (as amended 2013). (referred to as NEPM 2013)

2 <u>SITE INFORMATION</u>

2.1 <u>Site Identification</u>

Table 2-1: Site Identification

Current Site Owner:	ANZ Tissue Product Pty Ltd
Site Address:	58-62 Redfern Street, Wetherill Park, NSW
Lot & Deposited Plan:	Lot 5 DP 3682 and
	Part of Lot 234 DP 1037039
Current Land Use:	Industrial
Proposed Land Use:	Industrial
Local Government Authority (LGA):	Fairfield City Council
Current Zoning:	General Industrial (IN1)
Area of Proposed Development (m ²):	16,430
RL (AHD in m) (approx.):	40-43
Geographical Location (decimal degrees) (approx.):	Latitude: -33.842919367
	Longitude: 150.914545164

2.2 <u>Site Location and Regional Setting</u>

The site is located in a predominantly industrial area of Wetherill Park. The site is bounded by Redfern Street to the immediate south. The site is located approximately 700m to the south of Prospect Creek.

2.3 <u>Topography</u>

The site is located in generally flat regional topography with the site itself characterised by a localised slope of approximately 1^0 the east.

2.4 <u>Site Inspection</u>

A walkover inspection of the site was undertaken by EIS on 9/11/2016 and 6/4/2017. The site appeared generally similar in configuration and operation. A summary of the findings is outlined in the following subsections:

2.4.1 <u>Buildings, Structures and Roads</u>

The buildings on site consisted of a number of sheds of varying size with one main and two smaller sheds at 60 Redfern Street and two large adjoining sheds at 62 Redfern Street all of which were constructed using sheet metal. Two smaller brick structures conjoined to the south-most shed at 62 Redfern Street and served as administrative and recreational areas. The site appeared to be used for manufacturing or distribution of paper tissue related products.

2.4.2 Boundary Conditions, Soil Stability and Erosion

The majority of the site was hard surfaced with no obvious signs of erosion seen on the site or at the site boundary.

2.4.3 <u>Visible or Olfactory Indicators of Contamination</u>

No obvious indicators of USTs were observed on the site. No visible or olfactory signs of contamination were observed during the investigation.

2.4.4 Presence of Drums/Chemicals, Waste and Fill Material

Inside the large ware house in the south-east section of the site various drums and large contains were observed which appeared to contain polymers and adhesives.

2.4.5 Drainage and Services

Surface water flows would be expected to be in a south easterly direction with the slight slope of the site. No services were identified as a potential migratory pathway.

2.4.6 <u>Sensitive Environments</u>

Sensitive environments such as wetlands, ponds, creeks or extensive areas of natural vegetation were not identified on site or in the immediate surrounds.

2.4.7 Landscaped Areas and Visible Signs of Plant Stress

Redfern Street frontage was the only area on the site with landscaped areas. This area included several gum trees in a grassed area. All vegetation was observed to be in a good condition with no sign of stress or dieback.

2.5 <u>Surrounding Land Use</u>

During the site inspection, EIS observed the following land uses in the immediate surrounds:

- North Commercial warehouse.
- South Commercial shipping container storage yard.
- East A crane/forklift company. Beyond which were industrial properties.
- West Commercial warehouse that appeared to distribute materials.

Stage 2 Environmental Site Assessment 58-62 Redfern Street, Wetherill Park, NSW EIS Ref: E29923K2rpt

2.6 Underground Services

The 'Dial Before You Dig' (DBYD) plans were reviewed for the assessment in order to establish whether any major underground services exist at the site or in the immediate vicinity that could act as a preferential pathway for contamination migration. No major services were identified that would be expected to act as preferential pathway for contamination migration.

2.7 Section 149 Planning Certificate

The s149 (2 and 5) planning certificates were reviewed for the assessment. Copies of the certificates are attached in the appendices. A summary of the relevant information is outlined below:

- The site is not located in an area of ecological significance;
- The site is not deemed to be: significantly contaminated; subject to a management order; subject of an approved voluntary management proposal; or subject to an on-going management order under the provisions of the CLM Act 1997;
- The site is not subject to a Site Audit Statement (SAS);
- The site is not located within an ASS risk area; and
- The site is not located in a heritage conservation area.

3 <u>GEOLOGY AND HYDROGEOLOGY</u>

3.1 <u>Regional Geology</u>

Regional geological information presented in the Lotsearch report (attached in the appendices) indicated that the site is underlain by Bringelly Shale of the Wianamatta Group, which typically consists of shale, carbonaceous claystone, claystone, laminite, fine to medium grained lithic sandstone, rare coal and tuff.

3.2 Acid Sulfate Soil Risk and Planning

The site is not located in an acid sulfate soil (ASS) risk area according to the risk maps prepared by the Department of Land and Water Conservation.

3.3 <u>Hydrogeology</u>

Hydrogeological information presented in the Lotsearch report (attached in the appendices) indicated that the regional aquifer in the areas immediately surrounding the site includes porous, extensive aquifers of low to moderate productivity. There were a total of 25 registered bores within the report buffer of 2,000m. In summary:

- The nearest registered bore was located approximately 500m from the site. This was utilised for monitoring purposes;
- The majority of the bores were registered for monitoring purposes; and
- The drillers log information from the closest registered bores typically identified fill and/or clay soil to depths of 1.2-4m, underlain by shale bedrock. Standing water levels (SWLs) in the bores ranged from 1.0mBGL to 19.0mBGL.

The information reviewed for this assessment indicated that the subsurface conditions at the site are likely to consist of residual soils overlying relatively shallow bedrock. The potential for viable groundwater abstraction and use of groundwater under these conditions is considered to be low.

3.4 <u>Receiving Water Bodies</u>

Surface water bodies were not identified in the immediate vicinity of the site. The closest surface water body is Prospect Creek located approximately 700m to the north of the site. This is down gradient from site, however, the distance from the site limits its potential to be a receptor.

4 SITE HISTORY INFORMATION

4.1 <u>Review of Historical Aerial Photographs</u>

Historical aerial photographs were included in the Lotsearch report (attached in the appendices). EIS has reviewed the photographs and summarised relevant information in the following table:

Year	Details
1955	The majority of the site appeared to be used for agriculture including, possibly market gardens. A creek appeared to be present in the southern section of the site running in an east to west direction. The northern section of the site appeared to be occupied by a homestead with various sheds observed. The surrounding areas appeared similar to the site and were most likely used for grazing and/or market garden purposes.
1961	The site and immediate surrounds appeared to be generally similar to the 1955 aerial photograph. However, the sheds in the northern section of the site appeared to have been reconfigured.
1965	The site and immediate surrounds appeared to be generally similar the 1961 aerial photograph. However, the homestead in the northern section of the site appeared to have been demolished.
1970	The site and immediate surrounds appeared to be generally similar the 1965 aerial photograph. However, several small structures appeared to have been built in the northern section of the site.
1982	The site and immediate surrounds appeared to be generally similar the 1970 aerial photograph. However, several small structures, in the northern section of the site, appeared to have been demolished. Industrial warehouses appeared to have been constructed to the north-west of the site.
1991	The remaining small structures in the northern section of the site appeared to have been demolished. The site appeared to have been redeveloped with various industrial buildings constructed and the surface appeared to be predominantly paved. Industrial warehouses appeared to have been constructed to the east of the site.
2004	The large shed in the eastern section of the site appeared to have been extended to the west. This building appeared similar to the existing (2016) building. Industrial warehouses appeared to have been constructed in the surrounding areas.
2009	The site and immediate surrounds appeared to be generally similar the 2004 aerial photograph. However, several building in the southern section of the site appeared to have been demolished.

Year	Details
2014	The site and immediate surrounds appeared to be generally similar the 2009 aerial photograph. However, various sections of the site appeared to be used for storing what appeared to be shipping containers.

4.2 <u>Review of Historical Land Title Records</u>

Historical land title records were reviewed for the assessment. The record search was undertaken by Advance Legal Searchers Pty Ltd. Copies of the title records are attached in the appendices.

The records indicated that the site was owned by a farmers from 1910-1919 and a textile company from 1963-1966. The professions of the individuals listed on the title records from 1966 are not considered to be associated with potentially contaminating activities.

4.3 <u>SafeWork NSW Records</u>

SafeWork NSW records were reviewed for the assessment. Copies of relevant documents are attached. A summary of the relevant information is provided in the following table:

Record	License Details	
Number/Year		
35/030244 (2005)	A map indicates that a paint storage shed, paint decantering, liquid disposal tank, waste bin and scrap metal bin were located in the northern section of the site.	
	Pact C – Dangerous Goods Storage details identified the following listed associated products: LPG 190 kg cylinder, (paint 250L and 100L) and toluene 200L. Based on the information "roofed store" EIS are of the opinion that these chemicals have been stored above ground.	
35/030244	Application for renewal	
(1996)	1 x decanting cylinder UN 1075 petroleum gases, Liquid 190kg	
35/030244	Application for new licence, amended or transfer	
(1995)	1 x decanting cylinder Liquid 190kg	
	1 x liquefied petroleum gases, Liquid 373L	

Table 4-2: Summary of SafeWork NSW Records

4.4 <u>NSW EPA Records</u>

The Lotsearch report (attached in the appendices) included information from the NSW EPA databases for the following:

• Records maintained in relation to contaminated land under Section 58 of the CLM Act 1997;

- Records of notified sites under Section 60 of the CLM Act 1997 (Duty to Report Contamination); and
- Licensed activities under the Protection of the Environment Operations Act (1997⁸).

The search included the site area and surrounding areas in the report buffer of 1000m. The search indicated the following:

- There were no records for the site or within the search buffer listed under Section 58 of the CLM Act 1997;
- The site has not been notified under Section 60 of the CLM Act 1997. There were two notified properties in the report buffer which included Sims Wetherill Park (a metal industry) and Nationwide Oil Pty Ltd/Transpacific Industrial Services listed as "other industry".
- There were no records for licenced activities at the site under the POEO Act 1997. Current and historical licenses were identified for several properties within the report buffer. This included recovery of general waste and other types, container reconditioning, non-thermal treatment of hazardous waste, paper or pulp production, fuel production, plastic resins production and various similar related activities.

4.5 Historical Business Directory and Additional Lotsearch Information

Historical business records for the site and surrounding areas in the report buffer were included in the Lotsearch report (attached in the appendices). The records indicated the following:

- From 1950 to 1970 no businesses were listed in the directory;
- Various motor garages and service stations were listed within the surrounding area in the 1991 business directory these included Redd, John Automotive (south-east), Solo Oil Australia Pty Ltd (west), Gomez, J. M. Mechanical Repairs (south), D & O Mechanical Repairs (south-east), Vaccari (east), R. Mechanical Repairs (east) and Sam's Mechanical Service (south-east);
- Various other business activities in the surrounding area included truck and bus repairs, scrap metal merchants, engineering, tyre dealers, welders, sheet metal workers, auto electricians and various other similar related businesses; and
- Australian Portable Building Pty. Ltd., (Inc. In N.S.W) were listed on the site in the 1991 business directory and their activities included buildings pre-fabrication, portable and modular manufactures, distributors, erectors and hire services.

In addition to the above, EIS have reviewed additional information contained within the Lotsearch report and note the following:

- There were no local or state heritage items at the site or in the immediate surrounds; and
- There were no significant ecological constraints at the site or in the immediate surrounds.

⁸ NSW Government Legislation, (1997). *Protection of the Environment Operations Act 1997*. (referred to as POEO Act 1997)

4.6 <u>Summary of Site History Information</u>

A summary of the historical land uses and activities is presented in the table below. The information presented in the table is based on a weight of evidence assessment of the site history documentation and observations made by EIS.

Year(s)	Potential Land Use / Activities	Supporting Evidence
1910-1963	Agricultural (grazing)	Land titles indicated the property was owned by a farmer and various individuals during the time period.
1963-1966	Agriculture and possibly textile	Land titles indicated the property was owned by a textile worker. The 1982 aerial photograph indicates that if this operation (textile) was undertaken on the site it would have most likely been in the northern section. The southern section of the site appeared to be used for agriculture during this time period. Alternatively 'textile worker' may been the profession of the site owner and no textile related activity may have been undertaken at the site.
1966-2001	Agriculture and Industrial	The land used appeared to change from agriculture to industrial sometime between 1982 and 1991. The land title suggests that various companies operated on the site during this time period however the specifics of their operation are unknown.
2001-now	Commercial industrial (manufacturing tissue and building related products)	Land titles identified the site was owned by ANZ tissue Product Pty Ltd from 2001 to now.

Table 4-3. Summary	of Historical Land Uses
Tuble + 5. Summar	

4.7 Integrity of Site History Information

The majority of the site history information has been obtained from government organisations as outlined in the relevant sections of this report. The veracity of the information from these sources is considered to be relatively high. A certain degree of information loss can be expected given the lack of specific land use details over time. EIS has relied upon the Lotsearch report and has not independently verified any information contained within. However, it is noted that the Lotsearch report is generated based on databases maintained by various government agencies and is expected to be reliable.

5 <u>CONCEPTUAL SITE MODEL</u>

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is presented in the following sub-sections and is based on the site information (including the site inspection information) and the review of site history information. Reference should also be made to the figures attached in the appendices.

5.1 Potential Contamination Sources/AEC and CoPC

The potential contamination sources/AEC and CoPC are presented in the following table:

Source / AEC	СоРС
<u>Fill material</u> - The site appears to have been historically filled to achieve the existing levels. The fill may have been imported from various sources and could be contaminated.	Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), petroleum hydrocarbons (referred to as total recoverable hydrocarbons – TRHs), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), polychlorinated biphenyls (PCBs) and asbestos.
On-Site Commercial Use- The site may have been occupied by a textile operation between 1963- 1966. The leakage and spillage of chemicals resulting in potential contamination may impacted the site.	Heavy metals, TRH, BTEX and VOCs
<u>Historical agricultural use</u> – The site appears to have been used for grazing and market garden purposes. This could have resulted in contamination across the site via use of machinery, application of pesticides and building/demolition of various structures. Old asbestos irrigation pipes may also be present.	Heavy metals, TRH, PAHs, OCPs, PCBs and asbestos
<u>Hazardous Building Material</u> – Hazardous building materials may be present as a result of former building and demolition activities. These materials may also be present in the existing buildings/ structures on site.	Asbestos, lead and PCBs
Off-Site Commercial Use – The site is located in a commercial/industrial area of Wetherill Park. The leakage and spillage of chemicals resulting in	Lead, TRH, BTEX, PAHs volatile organic compounds (VOCs) possibly including chlorinated solvents such as

Table 5-1: Potential Contamination Sources/AEC and Contaminants of Potential Concern

Source / AEC	СоРС
potential contamination may have occurred on	trichloroethylene (TCE) which is commonly used as a
neighbouring properties which may impacted the	degreaser.
subject site.	

5.2 Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways

The mechanisms for contamination, affected media, receptors and exposure pathways relevant to the potential contamination sources/AEC are outlined in the following CSM table:

Potential mechanism for	Potential mechanisms for contamination include:		
contamination	 Fill material – importation of impacted material, 'top-down' impacts (e.g. leaching from surficial material), or sub-surface release (e.g. impacts from buried material); Historical agricultural use – 'top-down' and spills (e.g. application o pesticides, refuelling or repairing machinery, and other activities at the ground surface level); Historical commercial/industrial use 'top-down' and spills (e.g. refuelling or repairing machinery, and spills (e.g. refuelling or repairing machinery, and spills (e.g. refuelling or repairing machinery, and other activities at the ground surface level); Hazardous building materials – 'top-down' (e.g. demolition resulting in surficial impacts in unpaved areas); Off-site land uses – 'top-down', spill or sub-surface release. Impacts to the site could occur via migration of contaminated groundwater. 		
Affected media	Soil/soil vapour and groundwater have been identified as potentially affected media. Other affected media can include surface water, indoor and ambient air.		
Receptor identification	Human receptors include site occupants/users, construction workers and intrusive maintenance workers. Off-site human receptors include adjacent land users. Ecological receptors include terrestrial organisms and plants within unpaved areas (including the proposed landscaped areas), and freshwater ecology in Prospect Creek.		
Potential Exposure pathways	Potential exposure pathways relevant to the human receptors include ingestion, dermal absorption and inhalation of dust (all contaminants) and vapours (volatile TRH, naphthalene and BTEX). The potential for exposure would typically be associated with the construction and excavation works, and use of unpaved areas (i.e. the gardens) and basement (i.e. vapour inhalation).		

Potential exposure pathways for ecological receptors include primary contact and ingestion.

6 SAMPLING, ANALYSIS AND QUALITY PLAN

6.1 Data Quality Objectives (DQO)

The NEPM 2013 defines the DQO process as a seven step iterative planning tool used to define the type, quantity and quality of data needed to inform decisions relating to the environmental condition of the site. The DQO process is detailed in the Site Auditor Guidelines 2006 and the USEPA documents Data Quality Objectives Processes for Hazardous Waste Site Investigations (2000) and Guidance on Systematic Planning Using the Data Quality Objectives Process (2006). These seven steps are applicable to this assessment as summarised in the table below:

Step	Input				
State the Problem	The CSM has identified AEC at the site which may pose a risk to the site receptors additional intrusive investigation is required to assess the risk and comment on the suita of the site for the proposed development or intended landuse.				
Identify the Decisions/ Goal of the Study	 The data collection is project specific and has been designed based on the followin information: Review of site information including site history; AEC, CoPC, receptors, pathways and medium identified in the CSM; Development of SAC for each media; and The use of decision statements outlined below: Are any of the results above the SAC? Was asbestos encountered in any of the samples? Is further investigation necessary? Is the site suitable for the proposed development/land use? Statistical analysis will be used to assess the laboratory data against the SAC. The followin criteria will be adopted: The 95% Upper Confidence Limit (UCL) value of the arithmetic mean concentratio of each contaminant should be less than the SAC; The standard deviation (SD) of the results must be less than 50% of the SAC; and No single value exceeds 250% of the relevant SAC. Statistical calculations will not be undertaken if all results are below the SAC; and Statistical calculations will not be undertaken on the following: Health Screening Levels (HSLs) – elevated point source contamination associated wit petroleum hydrocarbons can pose a vapour risk to receptors; Ecological Investigation Levels (GILS) – elevated GILs can indicate a wide groundwater contamination risk. 				

Table 6-1: DQOs – Seven Steps

Step	Input			
Identify Information Inputs	 The following information will be collected: Soil samples based on subsurface conditions; Groundwater samples from monitoring wells; The SAC will be designed based on the criteria outlined in NEPM 2013. Other criteria will be used as required and detailed in this report; The samples will be analysed in accordance with the analytical methods outlined in NEPM 2013; Field screening information (i.e. PID data, presence of hydrocarbons etc.) will be taken into consideration in selecting the analytical schedule; and Any additional information that may arise during the field work will also be used as data inputs. 			
Define the Study Boundary	The sampling will be confined to the proposed development area of the site as shown in Figure 2.			
Develop the analytical approach (or decision rule)	 The following acceptable limits will be adopted for the data quality assessment: The following acceptance criteria will be used to assess the RPD results: results > 10 times the practical quantitation limit (PQL), RPDs < 50% are acceptable; results between 5 and 10 times PQL, RPDs < 75% are acceptable; results < 5 times PQL, RPDs < 100% are acceptable; and An explanation is provided if RPD results are outside the acceptance criteria. Acceptable concentrations in Trip Spike (TS), Trip Blanks (TB). Non-compliance to be documented in the report; The following acceptance criteria will be used to assess the primary laboratory QA/QC results. Non-compliance to be documented: <u>RPDs:</u> Results that are < 5 times the PQL, any RPD is acceptable; and Results > 5 times the PQL, RPDs between 0-50% are acceptable; <u>LCS recovery and matrix spikes:</u> 70-130% recovery acceptable for metals and inorganics; 60-140% recovery acceptable for organics; and 10-140% recovery acceptable for general organics; and 10-140% recovery acceptable for VOCs; 			
Specify the performance or acceptance criteria	NEPM 2013 defines decision errors as 'incorrect decisions caused by using data which is not representative of site conditions'. This can arise from errors during sampling or analytical testing. A combination of these errors is referred to as 'total study error'. The study error can be managed through the correct choice of sample design and measurement.			

Step	Input				
	Decision errors can be controlled through the use of hypothesis testing. The test can be used to show either that the baseline condition is false or that there is insufficient evidence to indicate that the baseline condition is false.				
	The null hypothesis is an assumption that is assumed to be true in the absence of contrary evidence. In this case, for example, the PCC identified in the CSM is considered to pose a risk to receptors unless proven not to. The null hypothesis has been adopted for this assessment.				
Optimise the design for obtaining data	The most resource-effective design will be used in an optimum manner to achieve the assessment objectives.				

6.2 Soil Sampling Plan and Methodology

The soil sampling plan and methodology adopted for this assessment is outlined in the table below:

Aspect	Input
Sampling	The NSW EPA Contaminated Sites Sampling Design Guidelines (1995 ⁹) recommend a sampling
Density	density for an environmental assessment based on the size of the investigation area. The guideline provides a minimum number of sampling points required for the investigation on a systematic sampling pattern.
	The guidelines recommend sampling from a minimum of 27 evenly spaced sampling points for this site with an area of approximately 16,430m ² .
	Samples for this investigation were obtained from 17 sampling points plus 10 sampling points in the stage 1 ESA meets the minimum sampling density recommended by the EPA.
Sampling Plan	The sampling locations were selected on access availability and site coverage. Additional sampling points were specifically targeted to assess the potential for contamination associated with the location BH3.
Sampling Equipment	Soil samples were obtained on 6/4/2017 in accordance with the standard sampling procedure (SSP) attached in the appendices.
	Sampling locations were set out using a tape measure. In-situ sampling locations were cleared for underground services by an external contractor prior to sampling as outlined in the SSP.

Table 6-2: Soil Sampling Plan and Methodology

⁹ NSW EPA, (1995), Contaminated Sites Sampling Design Guidelines. (referred to as EPA Sampling Design Guidelines 1995)

Aspect	Input			
	 The sample locations were drilled using the following equipment as shown on the borehold logs attached in the appendices: Hydraulically operated drill rig equipped with spiral flight augers. Soil samples were obtained from a Standard Penetration Test (SPT) sampler or directly from the auger when conditions did not allow use of the SPT sampler; and A four-wheel-drive (4wd) mounted hydraulically push tube rig. Soil samples were obtained from disposable polyethylene push tube samplers. 			
Sampling Collection and Field QA/QC	Soil samples were collected from the fill and natural profiles based on field observations. The sampling depths are shown on the logs attached in the appendices. Additional samples were obtained when relatively deep fill (>0.5m) was encountered Samples were also obtained when there was a distinct change in lithology or based on the observations made during the investigation. During sampling, soil at selected depths was split into primary and duplicate samples for field QA/QC analysis. Samples were placed in glass jars with plastic caps and teflon seals with minimal headspace Samples for asbestos analysis were placed in zip-lock plastic bags.			
	Sampling personnel used disposable nitrile gloves during sampling activities. The sample were labelled with the job number, sampling location, sampling depth and date in accordance with the SSP.			
Field PID Screening for VOCs	A portable Photoionisation Detector (PID) was used to screen the samples for the presence of VOCs and to assist with selection of samples for hydrocarbon analysis. The sensitivity of the PID is dependent on the organic compound and varies for different mixtures of hydrocarbons. Some compounds give relatively high readings and some can be undetectable even though present in identical concentrations. The portable PID is best used semi-quantitatively to compare samples contaminated by the same hydrocarbon source. The PID is calibrated before use by measurement of an isobutylene standard gas. All the PID measurements are quoted as parts per million (ppm) isobutylene equivalents. PID calibration records are attached in the appendices. PID screening for VOCs was undertaken on soil samples using the soil sample headspace method. VOC data was obtained from partly filled zip-lock plastic bags following equilibration of the headspace gases.			
Sample Preservation	Soil samples were preserved by immediate storage in an insulated sample container with ice in accordance with the SSP.			

Aspect	Input		
	On completion of the fieldwork, the samples were delivered in the insulated sample container		
	to a NATA registered laboratory for analysis under standard COC procedures.		

6.3 Groundwater Sampling Plan and Methodology

The groundwater sampling plan and methodology is outlined in the table below:

Table 6-3:	Groundwater	Sampling	Plan	and	Methodology
	Groundfatter	Sampling		ana	meened along by

Aspect	Input				
Sampling Plan	Groundwater monitoring wells were installed in three selected (MW301, MW302 and MW303) spread across the site as shown on Figure 2.				
	The monitoring well locations were chosen to target the AEC and PCC encountered at the site.				
Monitoring Well Installation Procedure	The monitoring well construction details are documented on the appropriate borehole logs attached in the appendices. The monitoring wells were installed to depths of approximately 6.0m below ground level. The installation depth was designed to make an assessment of shallow perched groundwater conditions.				
	The wells were constructed as follows:				
	 A 50mm diameter Class 18 PVC casing and machine slotted screen; 				
	• A 2mm sand filter pack was used around the screen section for groundwater infiltration;				
	A bentonite seal was used on top of the slotted section to seal the wells; and				
	• A gatic cover installed at the surface with a concrete plug to limit the inflow of surface water.				
Monitoring Well Development	The monitoring wells were development on 7/6/2017 using a submersible electrical pump. A minimum of 3 well volumes was removed or the wells were pumped dry in slow recharging conditions.				
	 The following parameters were monitored using calibrated field instruments (see SSP): Standing water level (SWL) using an electronic dip meter; and 				
	 pH, temperature, electrical conductivity (EC), dissolved oxygen (DO) and redox potential (Eh) using a YSI Multi-probe water quality meter. 				
	The field monitoring records and calibration data are attached in the appendices.				
Groundwater Sampling	The monitoring wells were allowed to recharge for approximately 5 to 7 days after development. Groundwater samples were obtained on 12/4/2017.				
	Prior to sampling, the monitoring wells were checked for the presence of Light Non-Aqueous Phase Liquids (LNAPLs) using an inter-phase probe electronic dip meter/dedicated disposable PVC bailer. The monitoring well head space was checked for VOCs using a calibrated PID unit.				
	The samples were obtained using a peristaltic pump. During sampling, the following parameters were monitored using calibrated field instruments (see SSP):				

Aspect	Input			
	 Standing water level (SWL) using an electronic dip meter; and pH, temperature, electrical conductivity (EC), dissolved oxygen (DO) and redox potential (Eh) using a YSI Multi-probe water quality meter. 			
	Steady state conditions were considered to have been achieved when the difference in the pH measurements was less than 0.2 units and the difference in conductivity was less than 10%.			
	Groundwater samples were obtained directly from the single use PVC tubing and placed in the sample containers.			
	The use of low-flow sampling techniques (such as a micro-purge or peristaltic pump) generally provides for an increased confidence of accuracy, and in particular, improves the likelihood that the sample is representative of general aquifer conditions due to much lower aquifer disturbance during sampling.			
	Duplicate samples were obtained by alternate filling of sample containers. This technique was adopted to minimise disturbance of the samples and loss of volatile contaminants associated with mixing of liquids in secondary containers, etc.			
	Groundwater removed from the wells during development and sampling was transported to EIS in jerry cans and stored in holding drums prior to collection by a licensed waste water contractor for off-site disposal.			
	The field monitoring record and calibration data are attached in the appendices.			
Sample Preservation	The samples were preserved in accordance with water sampling requirements detailed in NEPM 2013 and placed in an insulated container with ice in accordance with the SSP.			
	On completion of the fieldwork, the samples were delivered in the insulated sample container to a NATA registered laboratory for analysis under standard COC procedures.			

6.4 <u>Analytical Schedule</u>

The analytical schedule is outlined in the following table:

Table 6-4: Analytical Schedule

PCC/CoPC	Fill Samples	Natural Soil Samples	Groundwater Samples
Heavy Metals	20	4	3
TRH/BTEXN	20	4	3

PCC/CoPC	Fill Samples	Natural Soil Samples	Groundwater Samples
VOCs	Na	Na	3
PAHs	20	4	3
OCPs/OPPs	10	Na	Na
PCBs	10	Na	Na
Asbestos	10	Na	Na
pH/CEC/Clay Content (%)	1	Na	Na
pH/EC	Na	Na	3
TCLP Metals	2	Na	Na
TCLP PAHs	1	Na	Na
Asbestos in Fibre Cement Fragments (FCF)	Na	Na	Na

6.4.1 <u>Laboratory Analysis</u>

The samples were analysed by the NATA Accredited laboratory/s using the analytical methods detailed in Schedule B(3) of NEPM 2013. Reference should be made to the laboratory reports attached in the appendices for further details.

Table 6-5: Laboratory Details

Samples	Laboratory	Report Reference
All primary samples and field QA/QC samples including (intra-laboratory duplicates, trip blanks, trip spikes)	Envirolab Services Pty Ltd NSW, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	164998 and 164998-A, 165176
Inter-laboratory duplicates	Envirolab Services Pty Ltd VIC, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance) National Measurement Institute (NMI)	10552

7 SITE ASSESSMENT CRITERIA (SAC)

The SAC adopted for the assessment is outlined in the table below. The SAC has been derived from the NEPM 2013 and other guidelines as applicable. The guideline values for individual contaminants are presented in the attached report tables.

Guideline	Applicability	
Health Investigation Levels (HILs) (NEPM 2013)	The HIL-D criteria for 'commercial/industrial' have been adopted for this assessment. The proposed development is for a new warehouse. Therefore the commercial/industrial criteria are considered the most appropriate.	
Health Screening Levels (HSLs) (NEPM 2013)	The HSL-D criteria for 'commercial/industrial' have been adopted for this assessment.	
Ecological Assessment Criteria (EAC) (NEPM 2013)	A preliminary screening of ecological risk has been undertaken based on the limited information available at this stage. The EAC criteria for 'urban residential and public open space (URPOS)' exposure setting have been adopted.	
	 The EILs for selected metals have been derived as follows: The ABC values for high traffic (25th percentiles) areas for new suburbs of NSW published in Olszowy et. al. (1995¹⁰) has been adopted for this assessment; and One selected fill samples obtained from the surficial profile (<2m) across the site were analysed for pH, CEC and clay content. These results were substituted for the entire site to calculate the ACL. 	
	Technical Report no 39, Risk-Based Management and Remediation Guidance for benzo(a)pyrene prepared by the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) (2017) ¹¹ includes new ecological criteria for B(a)P. The new criteria for B(a)P has been adopted for this assessment.	
Asbestos in Soil	The 'presence/absence' of asbestos in soil has been adopted as the assessment criterion for the Preliminary Site Investigation (PSI).	

¹⁰ Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4.* Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission.

¹¹ Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, (2017), *risk-based management and remediation guidance for benzo(a)pyrene*. (referred to as CRCCARE 2017)

Guideline	Applicability
Waste Classification	The criteria outlined in the NSW EPA Waste Classification Guidelines - Part 1: Classifying
(WC) Criteria	Waste (2014 ¹²) has been adopted to classify the material for off-site disposal.
Groundwater Investigation Levels (GILs)	The NSW Department of Environment and Conservation (now EPA) Guidelines for the Assessment and Management of Groundwater Contamination (2007 ¹³) require an assessment of environmental values including:
	1. <u>Aquatic Ecosystems:</u> The closest receiving water body in the vicinity of the site is Prospect Creek. This water body predominantly sustains a freshwater ecosystem. Hence the freshwater water trigger values presented in Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000 ¹⁴) have been adopted for the assessment (referred to as GIL-ANZECC-Fresh).
	The NSW EPA promotes the use of trigger values for the protection of 95% of aquatic ecosystems, except where the contaminants have the potential to bio-accumulate, in which case the 99% trigger values are recommended.
	The 95% trigger values have been adopted for this assessment. Where necessary, the low reliability trigger values are quoted.
	2. <u>Human Uses</u> : The groundwater bore search did not indicate the presence of bores registered for domestic use in the vicinity of the site. The extraction and use of groundwater for drinking purposes is unlikely to occur at the site. The site is also connected to the mains water supply. However, as a conservative measure the the Australian Drinking Water Guidelines (2011 ¹⁵) have been adopted for this assessment (referred to as GIL-ADWG).
	In the absence of locally endorsed guidelines for individual PAHs and VOCs in groundwater, the USEPA Region 9 PRGs for 'Tap Water' have been adopted as the GILs for individual PAHs and VOCs. It is noted that these guidelines have not been endorsed by NSW EPA and are used only as a preliminary screening tool.
	3. <u>Health Risk in Non-use Scenarios</u> : Health risks in non-use scenarios are usually associated with the presence of vapours associated with volatile contaminants.

¹² NSW EPA, (2014), *Waste Classification Guidelines, Part 1: Classifying Waste*. (referred to as Waste Classification Guidelines 2014)

¹³ NSW DEC (2007), *Guidelines for the Assessment and Management of Groundwater Contamination* (referred to as Groundwater Guidelines 2011)

¹⁴ ANZECC, (2000), *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. (referred to as ANZECC 2000)

¹⁵ National Health and Medical Research Council, (2011), Australian Drinking Water Guidelines. (referred to as ADWG 2011)

Guideline	Applicability	
	The HSL D for 'commercial/industrial' have been adopted for this investigation.	

8 INVESTIGATION RESULTS

8.1 <u>Subsurface Conditions</u>

A summary of the subsurface conditions encountered during the investigation is presented in the table below. Reference should be made to the borehole logs attached in the appendices for further details.

Table 8-1: Summary	of Subsurface Conditions

Profile	Description (m in bgl)
Pavement	Asphaltic Concrete (AC)/Concrete pavement was encountered in all boreholes at 110mm to 300mm in depth.
Fill	 Fill material was encountered at the surface or beneath the pavement in all boreholes with the exception of BH 303 and extended to depths of approximately 0.3m to 4.2m. BH 307, BH 312 and BH316 were terminated in the fill at a maximum depth of approximately 2.25m. The fill typically comprised of: silty clay; silty sandy gravel; silty sandy clay; silty gravelly clay; silty sandy clay and sandy gravelly clay. The fill contained inclusions of: ash; slag; organic material; ironstone; igneous and shale gravel.
	Hydrocarbon odours were encountered in the fill in BH306 beneath the concrete pavement and decreased with depth.
Natural Soil	The natural soil typically consisted of silty clay of various colours. The clay contained inclusions of ironstone gravel. The natural soil extended to a maximum depth of approximately 4.7m in BH 306.
Bedrock	Shale bedrock was encountered in the majority of the boreholes at depths ranging from approximately 0.3m to 4.4m.
Groundwater	BH301 and BH302 encountered seepage during drilling. The remaining boreholes were dry after the completion of drilling.

8.2 Field Screening

A summary of the field screening results are presented in the table below.

Table 8-2: Summary of Field Screening

Aspect	Details (m in bgl)	
PID Screening of Soil Samples for VOCs	PID soil sample headspace readings are presented in attached report tables and the COC documents attached in the appendices. The results ranged from 0ppm to 0.6ppm equivalent isobutylene. However these results are not considered to be significant. Samples with elevated PID readings were analysed for TRH and BTEXN.	

Aspect	Details (m in bgl)
Groundwater Depth	Groundwater seepage was encountered in boreholes BH301 and BH303 during drilling at depths of approximately 3.0 to 5.0. The remaining boreholes were dry during and a short time after completion of drilling.
	SWL measured in the monitoring wells installed at the site ranged from 2.22 to 4.75m.
Groundwater Field Parameters	 Field measurements recorded during sampling are as follows: pH ranged from 6.30 to 6.59; EC ranged from 3348µS/cm to 24708µS/cm; Eh ranged from 54.6mV to 147.6mV; and DO ranged from 0.4ppm to 1.8ppm.
LNAPLs petroleum hydrocarbons	Free phase LNAPLs were not detected using the interphase probe during groundwater sampling.

8.3 <u>Soil Laboratory Results</u>

The soil laboratory results for EIS Stage 1 ESA and this investigation are compared to the relevant SAC in the attached report tables. A summary of the results assessed against the SAC is presented below.

Table 8-3: Summary of Soil	Laboratory Results
----------------------------	--------------------

Analyte	Results Compared to SAC
Heavy Metals	HILs: All heavy metal results were below the HIL-D criteria.
	EILs: All heavy metal results were below the EIL- Commercial/Industrial criteria.
	WC: Four nickel results were above the CT1 criteria. TCLP leachates were prepared from the four samples and analysed for nickel. The results were less than the TCLP1 criteria.
TRH	HSLs: All TRH results were below the HSL-D criteria.
	ESLs: All TRH results were below the ESL- Commercial/Industrial criteria.
	WC: All TRH results were less than the relevant CT1 criteria.
BTEXN	HSLs:

Analyte	Results Compared to SAC
	All BTEXN results were below the HSL-D criteria.
	ESLs: All BTEXN results were below the ESL- Commercial/Industrial criteria.
	<u>WC:</u> All BTEX results were less than the relevant CT1 criteria.
PAHs	HILs: All PAH results were below the HIL-D criteria.
	HSLs: All naphthalene results were below the HSL-D criteria.
	ESLs: All benzo(a)pyrene results were below the ESL- Commercial/Industrial criteria.
	EILs: All naphthalene results were below the EIL- Commercial/Industrial criteria.
	<u>WC:</u> Two B(a)P results were above the relevant CT1 criteria. All total PAH results were less than the CT1 criteria. TCLP leachates were prepared from the two samples and analysed for PAHs. The results were less than the TCLP1 criteria.
OCPs & OPPs	HILs: All OCP and OPP results were below the HIL-D criteria.
	EILs: All DDT results were below the EIL- Commercial/Industrial criteria.
	WC: All OCP and OPP results were less than the relevant CT1 criteria.
PCBs	HILs: All PCB results were below the HIL-D criterion.
	WC: All PCB results were less than the SCC1 criterion.
Asbestos	Asbestos was not detected in the samples analysed for the investigation.

8.4 Groundwater Laboratory Results

The groundwater laboratory results are presented in the attached report tables. A summary of the results assessed against the SAC is presented below.

Analyte	Results Compared to SAC
Heavy Metals	 <u>GIL-ANZECC-Fresh:</u> Elevated concentrations of individual metals were encountered above the GIL-ANZECC criteria as outlined below: Two Cadmium results were above the GIL-ANZECC criteria. The maximum result encountered was 0.7ug/L in MW303; MW301 encountered a copper result of 6ug/L, above the GIL-ANZECC criteria of 1.4ug/L.; Three Nickel results were above the GIL-ANZECC criteria. The maximum result encountered was 33ug/L in MW301; and Three Zinc results were above the GIL-ANZECC criteria. The maximum result encountered was 38ug/L in MW301.
	GIL-(ADWG): Three elevated Nickel were encountered above the GIL-ADWG criteria. The maximum result encountered was 33ug/L in MW301.
	The remaining heavy metals were below the GIL-ADWG criteria.
TRH & BTEXN	GIL-ANZECC-Fresh: All BTEXN results were below the GIL-ANZECC criteria.
	HSLs: All TRH and BTEXN results were below the GIL-HSL-D criteria.
	GIL-(ADWG): All TRH and BTEXN results were below the GIL-ADWG criteria.
PAHs	GIL-ANZECC-Fresh: All PAH results were below the GIL-ANZECC criteria.
	HSLs: All naphthalene results were below the GIL-HSL-D criteria.
	<u>GIL-(ADWG):</u> All PAHs results were below the GIL-ADWG criteria.
OCPs & OPPs	GIL-ANZECC-Fresh: All results were below the GIL-ANZECC criteria.

Analyte	Results Compared to SAC
	<u>GIL-(ADWG):</u> All results were below the GIL-ADWG criteria.
	Air results were below the GIL-ADWG thtena.
VOCs	GIL-ANZECC-Fresh:
	All VOC results were below the GIL-ANZECC criteria.
	<u>GIL-(ADWG):</u>
	All VOC results were below the GIL-ADWG criteria.
Other	The results for pH and EC are summarised below:
Parameters	• pH ranged from 6.8 to 7. The pH of the groundwater is neutral.
	- EC ranged from 2,800 μ S/cm to 21,000 μ S/cm. The groundwater is considered to be
	saline.

9 DATA QUALITY ASSESSMENT

As part of the data quality assessment the following data quality indicators (DQIs) were assessed: precision, accuracy, representativeness, completeness and comparability as outlined in the table below. Reference should be made to the appendices for an explanation of the individual DQI.

Table 9-1: Assessment of DQIs

Completeness

Field Considerations:

- The investigation was designed to target the AEC identified at the site;
- Samples were obtained from various depths based on the subsurface conditions encountered at the sampling locations. All samples were recorded on the borehole logs. All sampling points are shown on the attached Figure 2;
- The investigation was undertaken by trained staff in accordance with the SSP; and
- Documentation maintained during the field work is attached in the appendices where applicable.

Laboratory Considerations:

- Selected samples were analysed for a range of PCC/CoPC;
- All samples were analysed by NATA registered laboratory/s in accordance with the analytical methods outlined in NEPM 2013;
- Appropriate analytical methods and PQLs were used by the laboratory/s; and
- Appropriate sample preservation, handling, holding time and COC procedures were adopted for the investigation.

Comparability

Field Considerations:

- The investigation was undertaken by trained staff in accordance with the SSP;
- The climate conditions encountered during the field work were noted on the site description record maintained in the job file; and
- Consistency was maintained during sampling in accordance with the SSP.

Laboratory Considerations:

- All samples were analysed in accordance with the analytical methods outlined in NEPM 2013;
- Appropriate PQLs were used by the laboratory/s for all analysis (other than those outlined above);
- All primary, intra-laboratory duplicate/s and other QA/QC samples were analysed by the same laboratory; and
- The same units were used by the laboratory/s for all of the analysis.

Representativeness

Field Considerations:

• The investigation was designed to obtain appropriate media encountered during the field work as outlined in the SAQP. Dust and/or vapour sampling was outside the scope of this assessment; and

• All media based on the subsurface conditions encountered during the field work was sampled. All media identified in the SAQP was sampled.

Laboratory Considerations:

• All samples were analysed in accordance with the SAQP.

Precision

Field Considerations:

• The investigation was undertaken in accordance with the SSP.

Laboratory Considerations:

- Analysis of field QA/QC samples including inter and intra-laboratory duplicates, trip blanks (TB) and trip spikes (TS) as outlined below;
- The field QA/QC frequency adopted for the investigation is outlined below;
- Calculation of the Relative Percentage Difference (RPD) from the primary and duplicate results (the RPD calculation equation is outlined in the attached appendices); and
- Assessment of RPD results against the acceptance criteria outlined in **Section 6.1**.

Intra-laboratory RPD Results:

Soil Samples at a frequency of 10% of the primary samples:

- Dup JDC2 is a soil duplicate of primary sample BH302 (0.25-0.45m); and
- Dup HL2 is a soil duplicate of primary sample BH309 (0.21-0.4m).

Groundwater Samples at a frequency of 33% of the primary samples:

• Dup JDCW is a groundwater duplicate of primary sample MW301.

The intra-laboratory results are presented in the attached report tables. The results indicated that field precision was acceptable.

Inter-laboratory RPD Results:

Soil Samples at a frequency of 5% of the primary samples:

• Dup JDC1 is a soil duplicate of primary sample BH301 (0.26-0.4m).

The RPD values for a range of individual PAHs and heavy metals were outside the acceptance criteria. Values outside the acceptable limits have been attributed to sample heterogeneity and the difficulties associated with obtaining homogenous duplicate samples of heterogenous matrices. The PAH values outside of the acceptable limits have been ascribed to the very low concentrations of PAHs in the samples. At very low concentrations slight differences in concentrations can result in large RPDs.

The exceedances are not considered to have had an adverse impact on the data set as a whole.

Trip Spike (TS):

One groundwater TS was analysed for BTEX at a frequency of one spike per batch of volatiles. The results are presented in the attached report tables.

The results ranged from 93% to 101% and indicated that field preservation methods were appropriate.

Trip Blank (TB):

One soil TB was analysed for BTEX at a frequency of one blank per batch of volatiles. The results are presented in the attached report tables.

The results were all less than the PQLs.

Accuracy

Field Considerations:

• The investigation was undertaken in accordance with the SSP.

Laboratory Considerations:

- The analytical quality assessment adopted by the laboratory/s was in accordance with the NATA and NEPM 2013 requirements as outlined in the analytical report/s;
- A review of the report/s indicates the following comments noted by the laboratory/s:

<u>Envirolab Report 164998</u> – The laboratory RPD acceptance criteria was exceeded in one sample for copper. A triplicate result was issued to account for this.

<u>Envirolab Report 165176</u> – For the determination of dissolved metals in samples 1 and 4, the unpreserved sample was filtered through 0.45um filter at the lab due to the appearance of colloids and/or sediment in the supplied HN03 bottle.

10 WASTE CLASSIFICATION OF SOIL FOR OFF-SITE DISPOSAL

The waste classification of soil for off-site disposal is summarised in the following table:

Site Extent / Material Type	Classification	Disposal Option
Fill material in the investigation area	General Solid Waste (non- putrescible) (GSW)	A NSW EPA landfill licensed to receive the waste stream. The landfill should be contacted to obtain the required approvals prior to commencement of excavation. Alternatively, the fill material is considered to be
		suitable for re-use on the subject site (only) provided it meets geotechnical and earthwork requirements and is placed beneath the concrete pavement.
Natural silty clay and shale bedrock in the investigation area	Virgin excavated natural material (VENM)	VENM is considered suitable for re-use on-site, of alternatively, the information included in this report may be used to assess whether the material is suitable for beneficial reuse at another site as fill material.
		Alternatively, the natural material can be disposed of as VENM to a facility licensed by the NSW EPA to receive the waste stream.

Table 10-1: Waste Classification

11 TIER 1 RISK ASSESSMENT AND REVIEW OF PCSM

For a contaminant to represent a risk to a receptor, the following three conditions must be present:

- 1. Source The presence of a contaminant;
- 2. Pathway A mechanism or action by which a receptor can become exposed to the contaminant; and
- 3. Receptor The human or ecological entity which may be adversely impacted following exposure to contamination.

If one of the above components is missing, the potential for adverse risks is relatively low. The assessment identified the following elevated concentrations of heavy metals (cadmium, copper, nickel and zinc) above the adopted GIL criteria. Heavy metal concentrations above the GIL-ANZECC Fresh criteria are often encountered in urban groundwater. The presence of these heavy metals may be associated with leaking infrastructure and/or surface run off. No significant elevated concentrations of heavy metals above the HIL-D criteria were identified during the study. Therefore there is unlikely to be a point source for the metals at the site and the presence of heavy metals in the groundwater is more likely to be a regional issue. The risk posed to the environmental and human receptors outlined in the CSM is considered to be low due to the following reasons:

- Prospect Creek receives water from the surrounding urban area and is not considered to be a pristine ecosystem. Therefore the metals elevations are not considered to be significant; and
- This development will be paved and connected to the mains water supply therefore the risk of final site occupiers coming into contact with the groundwater is considered to be very low.

12 <u>CONCLUSION</u>

EIS consider that the report objectives outlined in **Section 1.3** have been addressed.

The decision statements specified in table 6.1 are addressed below:

- 1. Are any of the results above the SAC? Yes. There were some minor elevations of heavy metals above the GIL-ANZECC Fresh criteria. These were not considered to be significant and are most likely a regional issue.
- 2. Was asbestos encountered in any of the samples? No
- 3. Is further investigation necessary? No
- 4. Is the site suitable for the proposed development/land use? Yes

In the event unexpected conditions are encountered during development work or between sampling locations that may pose a contamination risk, all works should stop and an environmental consultant should be engaged to inspect the site and address the issue. A contingency plan that includes an unexpected finds protocol should be prepared that can be implemented if there are any unexpected finds during earthworks.

12.1 <u>Regulatory Requirement</u>

The regulatory requirements applicable for the site are outlined in the following table:

Guideline	Applicability
Duty to Report Contamination 20015 ¹⁶	EIS consider that there is no requirement to notify the NSW EPA.
POEO Act 1997	Section 143 of the POEO Act 1997 states that if waste is transported to a place that cannot lawfully be used as a waste facility for that waste, then the transporter and owner of the waste are each guilty of an offence. The transporter and owner of the waste have a duty to ensure that the waste is disposed of in an appropriate manner.

Table 12-1: Regulatory Requirement

¹⁶ NSW Environmental; Protection Agency, (2015), *Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997.* (referred to as Duty to Report Contamination 2009)

13 <u>LIMITATIONS</u>

The report limitations are outlined below:

- EIS accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the EIS proposal; and terms of contract between EIS and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, EIS has not undertaken any verification process, except where specifically stated in the report;
- EIS has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- EIS accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- EIS have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. EIS should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

LIST OF IN-TEXT TABLES

Table 1-1: Guidelines	2
Table 2-1: Site Identification	4
Table 4-1: Summary of Historical Aerial Photographs	8
Table 4-2: Summary of SafeWork NSW Records	9
Table 4-3: Summary of Historical Land Uses	11
Table 5-1: Potential Contamination Sources/AEC and Contaminants of Potential Concern	12
Table 5-2: CSM	13
Table 6-1: DQOs – Seven Steps	15
Table 6-2: Soil Sampling Plan and Methodology	17
Table 6-3: Groundwater Sampling Plan and Methodology	20
Table 6-4: Analytical Schedule	21
Table 6-5: Laboratory Details	22
Table 7-1: SAC Adopted for this Investigation	23
Table 8-1: Summary of Subsurface Conditions	26
Table 8-2: Summary of Field Screening	26
Table 8-3: Summary of Soil Laboratory Results	27
Table 8-4: Summary of Groundwater Laboratory Results	29
Table 9-1: Assessment of DQIs	31
Table 10-1: Waste Classification	34
Table 12-1: Regulatory Requirement	36

IMPORTANT INFORMATION ABOUT THIS REPORT

These notes have been prepared by EIS to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the EIS proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

EIS/J&K will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the assessment. If the subject site is sold, ownership of the assessment report should be transferred by EIS to the new site owners who will be informed of the conditions and limitations under which the assessment was undertaken. No person should apply an assessment for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an assessment report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site assessments identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an assessment indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Assessment Limitations

Although information provided by a site assessment can reduce exposure to the risk of the presence of contamination, no environmental site assessment can eliminate the risk. Even a rigorous professional assessment may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

Misinterpretation of Site Assessments by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an assessment report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

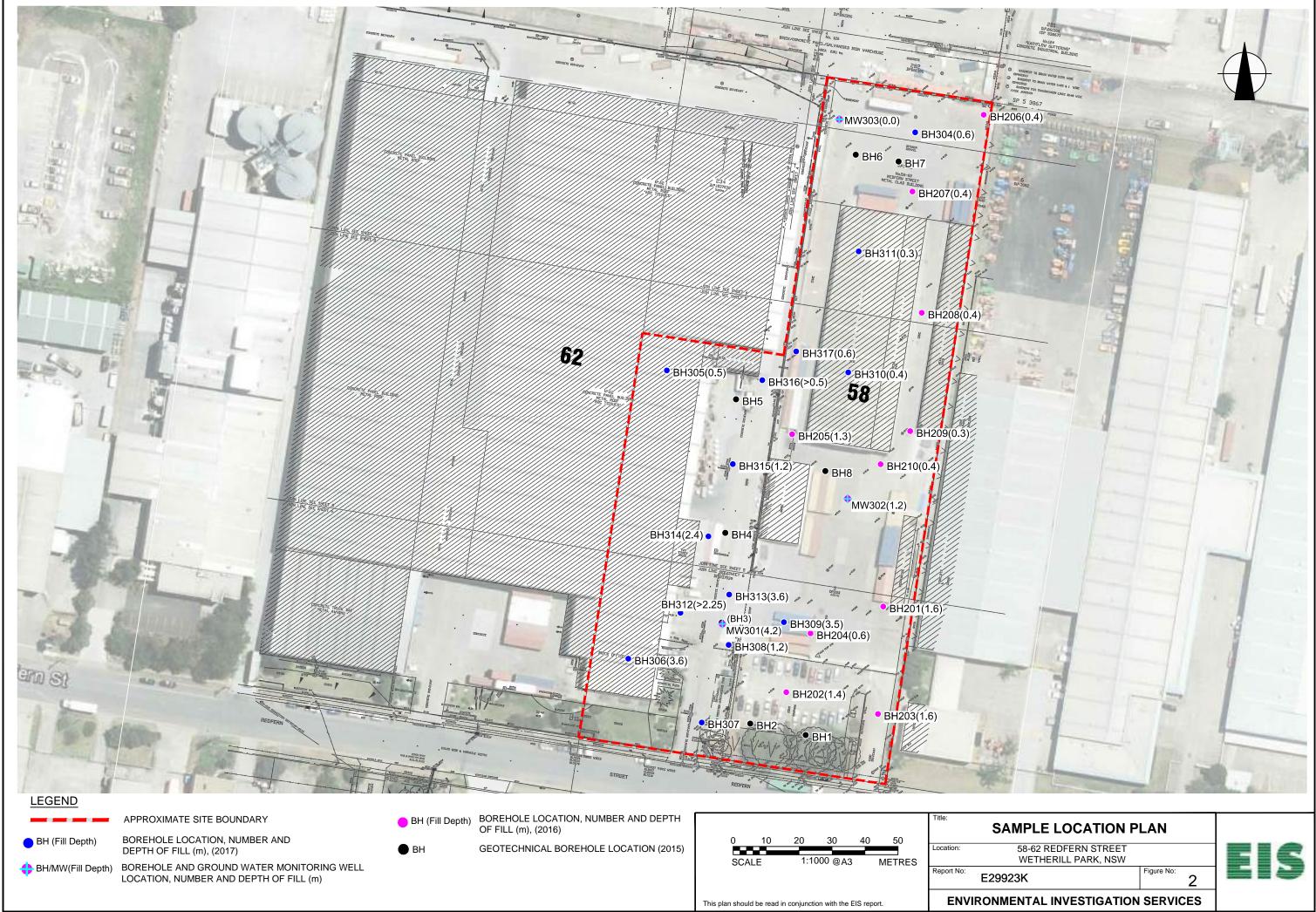
Logs Should not be Separated from the Assessment Report

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the assessment. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the assessment. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

To reduce the likelihood of borehole and test pit log misinterpretation, the complete assessment should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

Read Responsibility Clauses Closely

Because an environmental site assessment is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site assessment, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.



REPORT FIGURES

ENVIRONMENTAL INVESTIGATION SERVICES

This plan should be read in conjunction with the EIS report.

LABORATORY SUMMARY TABLES

Ē

												TABLE A										
										SOIL LAB	ORATORY R	ESULTS CON	APARED TO	HILS								
										All da	ta in mg/kg	unless state	ed otherwis	e								
			1																	1		I
				1		HEAVY N	IETALS	1		1		AHs			ORGANOCHL			1		OP PESTICIDES (OPPs)		
			Arsenic	Cadmium	Chromium VI 2	Copper	Lead	Mercury	Nickel	Zinc	Total PAHs	B(a)P TEQ ³	НСВ	Endosulfan	Methoxychlor	Aldrin & Dieldrin	Chlordane	DDT, DDD & DDE	Heptachlor	Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES
PQL - Envirolat	Services		4	0.4	1	1	1	0.1	1	1	-	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	100
Site Assessme	nt Criteria (SAG	2) 1	3000	900	3600	240000	1500	730	6000	400000	4000	40	80	2000	2500	45	530	3600	50	2000	7	Detected/Not Detected
Sample Reference	Sample Depth	Sample Description																				
BH201	0.5-0.6	Fill: silty clay	9	LPQL	11	41	19	LPQL	15	110	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detecteo
BH202	0.2-0.4	Fill: silty clay	4	LPQL	10	37	16	LPQL	17	69	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detected
BH203	1.1-1.2	Fill: silty clay	4	LPQL	12	40	18	LPQL	10	74	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detected
BH204	0.4-0.6	Fill: silty clay	LPQL	LPQL	16	18	12	LPQL	9	35	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detecteo
BH204	1.3-1.5	Silty clay	LPQL	LPQL	13	40	18	LPQL	12	72	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH205	0.2-0.4	Fill: silty clay	5	LPQL	20	39	26	LPQL	16	100	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detected
BH205	0.8-1.0	Silty clay	LPQL	LPQL	9	37	18	LPQL	50	130	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH206	0.2-0.4	Fill: silty clay	LPQL	LPQL	12	55	19	LPQL	20	110	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detected
BH206	1.0-1.2	Silty clay	LPQL	LPQL	8	22	9	LPQL	34	120	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH207	0.2-0.4	Fill: sandy gravel	LPQL	LPQL	16	71	13	LPQL	16	39	13.37	0.97	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detected
BH208 BH209	0.25-0.35	Fill: silty clay	5 LPQL	7.3 LPQL	32	58 56	43	LPQL	31 42	220 36	6.6 2.7	0.2	LPQL LPQL	LPQL	LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL	LPQL	0.2 LPQL	No asbestos detected
BH209 BH209	0.2-0.3	Fill: gravel	LPQL	LPQL	10	30	15	LPQL	42	60	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detected NA
BH210	0.2-0.4	Silty clay Fill: sandy clay	6	LPQL	9	40	16	LPQL	14	64	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detected
BH301	0.26-0.4	Fill: silty sandy gravel	LPQL	LPQL	27	74	10	LPQL	24	39	11.78	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detected
BH301	3.0-3.2	Fill: silty clay	16	LPQL	26	15	22	LPQL	14	28	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH302	0.25-0.45	Fill: silty clay	6	LPQL	16	39	19	LPQL	17	83	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detected
BH303	0.5-0.8	Silty Clay	LPQL	LPQL	9	11	10	0.2	10	34	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detected
BH304	0.15-0.3	Fill: silty clay	LPQL	LPQL	11	50	17	LPQL	17	110	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detected
BH305	0.15-0.35	Fill: silty sandy clay	LPQL	LPQL	17	41	17	LPQL	23	79	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detected
BH306	0.13-0.3	Fill: silty clay	4	LPQL	12	36	17	LPQL	15	68	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detected
BH306	3.0-3.2	Fill: silty clay	6	LPQL	27	18	23	LPQL	15	47	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH308	0.3-0.6	Fill: silty gravelly clay	5	LPQL	15	42	19	LPQL	18	93	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detected
BH309	0.21-0.4	Fill: silty clay	6	LPQL	11	39	20	LPQL	13	75	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detected
BH309	2.0-2.2	Fill: silty clay	6	LPQL	23	40	22	LPQL	14	61	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detected
BH310	0.15-0.35	Fill: silty clay	6	LPQL	10	47	19	LPQL	12	65	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	No asbestos detected
BH311	0.12-0.3	Fill: silty sandy clay	6	LPQL	2	15	6	LPQL	14	38	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH312	0.11-0.3	Fill: silty clay	7	LPQL	14	42	19	LPQL	17	96	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH313	0.3-0.5	Fill: silty clay	LPQL	LPQL	17	54	10	LPQL	70	130	4.8	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH314	0.2-0.4	Fill: silty clay	6	LPQL	13	41	19	LPQL	20	120	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH314	0.8-1.0	Fill: silty clay	5	LPQL	19	31	21	LPQL	10	47	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH315	0.5-0.95	Fill: silty clay	6	LPQL	11	32	16	LPQL	9	53	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH316	0.2-0.5	Fill: silty clay	LPQL	LPQL	11	78	12	LPQL	47	58	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH317	0.18-0.38	Fill: silty clay	12	LPQL	4	39	13	LPQL	22	65	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH301	0.26-0.4	Fill: silty sandy gravel	NA	NA	NA 14	NA 14	NA 15	NA	NA	NA 14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH306	3.6-3.8	Silty clay	6	LPQL	14 o	14	15	LPQL	4	14	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
BH308 BH311	1.1-1.3 0.3-0.5	Silty clay Shale	LPQL LPQL	LPQL	8	35 34	14 17	LPQL	2	22 14	LPQL LPQL	LPQL LPQL	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
BH313	0.3-0.5	Fill: sandy gravelly clay	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH313	3.6-3.8	Shale	7	LPQL	4	20	9	LPQL	5	26	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH316	0.2-0.5	Fill: silty clay	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Numbe		sincy only	34	34	34	34	34	34	34	34	34	34	24	24	24	24	24	24	24	24	24	20
Maximum V			16	7.3	38	78	43	0.2	70	220	13.37	0.97	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.2	NC
Explanation:				-				1				-										•

1 - Site Assessment Criteria (SAC): NEPM 2013, HIL-D: 'Commercial/Industrial'

- The results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.

3 - B(a)P TEQ - Benzo(a)pyrene Toxicity Equivalence Quotient has been calculated based on 8 carcinogenic PAHs and their Toxic Equivalence Factors (TEFs) outlined in NEPM 2013

Concentration above the SAC

VALUE

Abbreviations:

PAHs: Polycyclic Aromatic Hydrocarbons B(a)P: Benzo(a)pyrene PQL: Practical Quantitation Limit LPQL: Less than PQL OPP: Organophosphorus Pesticides OCP: Organochlorine Pesticides PCBs: Polychlorinated Biphenyls UCL: Upper Level Confidence Limit on Mean Value HILs: Health Investigation Levels NA: Not Analysed NC: Not Calculated NSL: No Set Limit SAC: Site Assessment Criteria NEPM: National Environmental Protection Measure

					C ₆ -C ₁₀ (F1)	>C C (E2)	Dessee	Taluana	Ethydhannana	Vulanas	Naphthalene	PID ²
						>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes		PID -
QL - Envirol					25	50	0.2	0.5 /IMERCIAL/INDUS		3	1	
SL Land Use Sample	Sample		Depth				CON	INIERCIAL/INDUS	INAL			
Reference	Depth	Sample Description	Category	Soil Category								
H201	0.5-0.6	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H202	0.2-0.4	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H203	1.1-1.2	Fill: silty clay	1m to <2m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H204	0.4-0.6	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H204	1.3-1.5	Silty clay	1m to <2m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H205	0.2-0.4	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H205	0.8-1.0	Silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H206	0.2-0.4	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H206	1.0-1.2	Fill: silty clay	1m to <2m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H207	0.2-0.4	Fill: sandy gravel	0m to < 1m	Sand	LPQL	60	LPQL	LPQL	LPQL	LPQL	0.2	0
H208	0.25-0.35	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H209 H209	0.2-0.3	Fill: gravel Silty clay	0m to < 1m 1m to <2m	Clay Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H209 H210	0.2-0.4	Fill: sandy clay	1m to < 2m 0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H301	0.26-0.4	Fill: silty sandy gravel	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H301	3.0-3.2	Fill: silty clay	2m to <4m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H302	0.25-0.45	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H303	0.5-0.8	Silty Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H304	0.15-0.3	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.5
H305	0.15-0.35	Fill: silty sandy clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H306	0.13-0.3	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H306	3.0-3.2	Fill: silty clay	2m to <4m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H308	0.3-0.6	Fill: silty gravelly clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H309	0.21-0.4	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H309	2.0-2.2	Fill: silty clay	1m to <2m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.6
H310	0.15-0.35	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.2
H311	0.12-0.3	Fill: silty sandy clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H312	0.11-0.3	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H313	0.3-0.5	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H314	0.2-0.4	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H314	0.8-1.0	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H315	0.5-0.95	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H316	0.2-0.5	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H317	0.18-0.38	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H301 H306	0.26-0.4	Fill: silty sandy gravel Silty clay	0m to < 1m 1m to <2m	Clay Clay	NA LPQL	NA LPQL	NA LPQL	NA LPQL	NA LPQL	NA LPQL	NA LPQL	0
H306 H308	1.1-1.3	Silty clay	1m to <2m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H311	0.3-0.5	Shale	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H313	0.3-0.5	1		Clay	NA	NA	NA	NA	NA	NA	NA	0
H313	3.6-3.8	Shale	2m to <4m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
H316	0.2-0.5	Fill: silty clay	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA	0
otal Numb	er of Sample	5			34	34	34	34	34	34	34	34
Aaximum V	alue				LPQL	60	LPQL	LPQL	LPQL	LPQL	0.2	0.6

SITE ASSESSMENT CRITERIA

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
PQL - Envirola	ab Services				25	50	0.2	0.5	1	3	1
HSL Land Use	Category ¹						CON	/IMERCIAL/INDUST	RIAL		
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category							
3H201	0.5-0.6	Fill: silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
3H202	0.2-0.4	Fill: silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
3H203	1.1-1.2	Fill: silty clay	1m to <2m	Clay	480	NL	6	NL	NL	NL	NL
3H204	0.4-0.6	Fill: silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
3H204	1.3-1.5	Silty clay	1m to <2m	Clay	480	NL	6	NL	NL	NL	NL
3H205	0.2-0.4	Fill: silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
3H205	0.8-1.0	Silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
3H206	0.2-0.4	Fill: silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
3H206	1.0-1.2	Fill: silty clay	1m to <2m	Clay	480	NL	6	NL	NL	NL	NL
3H207	0.2-0.4	Fill: sandy gravel	0m to < 1m	Sand	260	NL	3	NL	NL	230	NL
3H208	0.25-0.35	Fill: silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
3H209	0.2-0.3	Fill: gravel	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
3H209	1 1-1 2	Silty clay	1m to <2m	Clav	480	NI	6	NI	NI	NI	NI

BH209	1.1-1.2	Silty clay	1m to <2m	Clay	480	NL	6	NL	NL	NL	NL
BH210	0.2-0.4	Fill: sandy clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH301	0.26-0.4	Fill: silty sandy gravel	0m to < 1m	Sand	260	NL	3	NL	NL	230	NL
BH301	3.0-3.2	Fill: silty clay	2m to <4m	Clay	NL	NL	9	NL	NL	NL	NL
BH302	0.25-0.45	Fill: silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH303	0.5-0.8	Silty Clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH304	0.15-0.3	Fill: silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH305	0.15-0.35	Fill: silty sandy clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH306	0.13-0.3	Fill: silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH306	3.0-3.2	Fill: silty clay	2m to <4m	Clay	NL	NL	9	NL	NL	NL	NL
BH308	0.3-0.6	Fill: silty gravelly clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH309	0.21-0.4	Fill: silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH309	2.0-2.2	Fill: silty clay	1m to <2m	Clay	480	NL	6	NL	NL	NL	NL
BH310	0.15-0.35	Fill: silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH311	0.12-0.3	Fill: silty sandy clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH312	0.11-0.3	Fill: silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH313	0.3-0.5	Fill: silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH314	0.2-0.4	Fill: silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH314	0.8-1.0	Fill: silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH315	0.5-0.95	Fill: silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH316	0.2-0.5	Fill: silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH317	0.18-0.38	Fill: silty clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH301	0.26-0.4	Fill: silty sandy gravel	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA
BH306	3.6-3.8	Silty clay	1m to <2m	Clay	480	NL	6	NL	NL	NL	NL
BH308	1.1-1.3	Silty clay	1m to <2m	Clay	480	NL	6	NL	NL	NL	NL
BH311	0.3-0.5	Shale	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH313	0.3-0.5	Fill: sandy gravelly clay	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA
BH313	3.6-3.8	Shale	2m to <4m	Clay	NL	NL	9	NL	NL	NL	NL
BH316	0.2-0.5	Fill: silty clay	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA

58-62 Redfern Street, Wetherill Park, NSW

												COMMERCIA	/INDUSTRIAL									
					Clay Content			AGED HEAVY	METALS-EILS			EI	s					ESLs				
			pН	CEC (cmol _c /kg)	(% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₂₀ -C ₂₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C34-C40 (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)
L - Envirolab Services			-	1	-	4	1	1	1	1	1	0.1	0.1	25	50	100	100	0.2	0.5	1	3	0.0
bient Background Conce	entration (ABC) ²		-	-	-	NSL	8	18	104	5	77	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NS
Sample Sample eference Depth	Sample Description	Soil Texture																				
	ill: silty clay	Fine	9.9	42	8	9	11	41	19	15	110	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPC
	ill: silty clay	Fine	9.9	42	8	4	10	37	16	17	69	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPC
	ill: silty clay	Fine	9.9 9.9	42	8	4 LPQL	12	40	18	10	74	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPI
	ilty clay	Fine	9.9	42	8	LPQL	13	40	12	12	72	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPC
	ill: silty clay	Fine	9.9	42	8	5	20	39	26	16	100	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPC
	ilty clay	Fine	9.9	42	8	LPQL	9	37	18	50	130	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPC
	ill: silty clay	Fine	9.9	42	8	LPQL	12	55	19	20	110	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPI
	ility clay ill: sandy gravel	Fine Coarse	9.9 9.9	42	8	LPQL	8	22	13	34 16	120 39	LPQL 0.2	LPQL	LPQL	LPQL 60	LPQL 1100	LPQL 1300	LPQL	LPQL	LPQL	LPQL	LPI 0.9
	ill: silty clay	Fine	9.9	42	8	5	32	58	43	31	220	LPQL	LPQL	LPQL	LPQL	610	260	LPQL	LPQL	LPQL	LPQL	0.
209 0.2-0.3 Fi	ill: gravel	Coarse	9.9	42	8	LPQL	38	56	13	42	36	LPQL	LPQL	LPQL	LPQL	360	490	LPQL	LPQL	LPQL	LPQL	0.
209 1.1-1.2 Si	ilty clay	Fine	9.9	42	8	LPQL	10	30	11	7	60	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPI
	ill: sandy clay	Fine	9.9	42	8	6	9	40	16	14	64	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPI
	ill: silty sandy gravel ill: silty clay	Coarse Fine	9.9	42	8	LPQL 16	27 26	74	10	24	39	LPQL	LPQL NA	LPQL	LPQL	700 LPOL	920 LPOL	LPQL	LPQL	LPQL	LPQL	0.1 LP
302 0.25-0.45 Fi		Fine	9.9	42	8	6	16	39	19	17	83	LPQL	LPOL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LP
	ilty Clay	Fine	9.9	42	8	LPQL	9	11	10	10	34	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LP
304 0.15-0.3 Fi	ill: silty clay	Fine	9.9	42	8	LPQL	11	50	17	17	110	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LP
	ill: silty sandy clay	Fine	9.9	42	8	LPQL	17	41	17	23	79	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPI
	ill: silty clay	Fine	9.9 9.9	42	8	4	12 27	36 18	17 23	15 15	68 47	LPQL	LPQL NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPI
	ill: silty clay ill: silty gravelly clay	Fine	9.9	42	8	5	15	42	19	15	93	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPI
	ill: silty clay	Fine	9.9	42	8	6	11	39	20	13	75	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPI
309 2.0-2.2 Fi	ill: silty clay	Fine	9.9	42	8	6	23	40	22	14	61	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LP
	ill: silty clay	Fine	9.9	42	8	6	10	47	19	12	65	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPI
	ill: silty sandy clay	Fine	9.9	42	8	6	2	15	6	14	38	LPQL	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPI
	ill: silty clay ill: silty clay	Fine	9.9 9.9	42	8	7 LPQL	14	42 54	19 10	17 70	96 130	LPQL	NA	LPQL	LPQL	LPQL 300	LPQL 430	LPQL	LPQL	LPQL	LPQL	LPI 0.
	ill: silty clay	Fine	9.9	42	8	6	13	41	19	20	120	LPQL	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPI
	ill: silty clay	Fine	9.9	42	8	5	19	31	21	10	47	LPQL	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPI
315 0.5-0.95 Fi	ill: silty clay	Fine	9.9	42	8	6	11	32	16	9	53	LPQL	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPI
	ill: silty clay	Fine	9.9	42	8	LPQL	11	78	12	47	58	LPQL	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPI
317 0.18-0.38 Fi 301 0.26-0.4 Fi		Fine	9.9	42	8	12	4	39	13	22	65	LPQL	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL NA	LPC
	ill: silty sandy gravel	Fine	9.9	42	8	NA 6	NA 14	NA 14	NA 15	NA 4	NA 14	NA LPOL	NA LPOL	NA LPOL	NA LPOL	NA LPOL	NA LPOL	NA LPOL	NA LPOL	NA LPOL	LPOL	LPI
	ilty clay	Fine	9.9	42	8	LPQL	8	35	14	2	22	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPI
311 0.3-0.5 SI	ihale	Fine	9.9	42	8	LPQL	2	34	17	13	14	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LP
	ill: sandy gravelly clay	Fine	9.9	42	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
	ihale ill: silty clay	Fine Fine	9.9 9.9	42	8	7 NA	4 NA	20 NA	9 NA	5 NA	26 NA	LPQL NA	LPQL NA	LPQL NA	LPQL NA	LPQL NA	LPQL NA	LPQL NA	LPQL NA	LPQL NA	LPQL NA	LPI
otal Number of Samples																						
	•		34 9.9	34 42	34	34 16	34	34	34 43	34	34 220	34	24 LPQL	34 LPQL	34 60	34 1100	34 1300	34 LPQL	34 LPQL	34 LPQL	34 LPQL	34

ILs: Ecological Investigation Levels 8(a)P: Benzo(a)pyrene

OL: Practical Quantitation Limit

alue is highlighted in grey in the EIL and ESL Act eviations:

UCL: Upper Level Confidence Limit on Mean Value ESLs: Ecological Screening Levels NA: Not Analysed

NEPM: National Environmental Protection Measure EIL AND ESL ASSESSMENT CRITERIA

NC: Not Calculated

NSL: No Set Limit

ABC: Ambient Background Concentration

LPQL: Less than PQL

SAC: Site Assessment Criteria

Land Use Category 1 COMMERCIAL/INDUSTRIAL
 colsmatracurves/colsmat/

 pH
 CEC (mol/pR)
 CMy Caty
 Corport
 Colspan="6">Cols
 Colspan="6">Colsmatracurves/colsmatracu pH CEC (cmol,/kg) Clay Content AGED HEAVY M (% clay) Arsenic Chromium Copper
 DQL - Envirolab Services

 Sample
 Sample Sample Sample Sample Description

 Reference
 Depth
 Sample Description

 Bric201
 0.50.6
 Filt sity clay

 Bric202
 0.20.4
 Filt sity clay

 Bric201
 0.50.6
 Filt sity clay

 Bric201
 0.24.0.4
 Filt sity clay

 Bric204
 0.40.6
 Filt sity clay

 Bric205
 0.24.0.4
 Filt sity clay

 Bric206
 0.40.6
 Filt sity clay

 Bric206
 0.24.0.4
 Filt sity clay

 Bric206
 0.24.1
 Filt sity clay

 Bric206
 0.24.2
 Filt sity clay

 Bric206
 0.24.4
 Filt sity clay

 Bric206
 0.24.4
 Filt sity clay

 Bric207
 0.24.0.5
 Filt sity clay

 Bric208
 0.25.35
 Filt sity clay
 PQL - Envirolab Services
 -- ---</
 BH307
 0.2.0.4
 Fifth sandy gravel

 BH308
 0.2.0.3
 Fifth sinty (ray

 BH309
 0.2.0.3
 Fifth sinty (ray

 BH209
 0.2.0.3
 Fifth sinty (ray

 BH209
 0.2.0.3
 Fifth sinty (ray

 BH201
 0.2.0.4
 Fifth sinty (ray

 BH301
 0.2.0.4
 Fifth sinty (ray

 BH301
 0.3.0.4
 Fifth sinty (ray

 BH301
 0.3.0.4
 Fifth sinty (ray

 BH302
 0.3.0.4
 Fifth sinty (ray

 BH303
 0.5.0.45
 Fifth sinty (ray

 BH304
 0.5.0.3
 Fifth sinty (ray

 BH305
 0.5.0.3
 Fifth sinty (ray

 BH306
 0.3.0.3
 Fifth sinty (ray

 BH306
 0.3.0.3
 Fifth sinty (ray

 BH306
 0.3.0.3
 Fifth sinty (ray

 BH306
 0.3.0.4
 Fifth sinty (ray

 BH306
 0.3.0.4
 Fifth sinty (ray

 BH306
 0.3.2.2
 Fifth sinty (ray

 BH307
 0.2.2.2
 Fifth sinty (ray

 BH311 0.12-0.3 Fill: silty sandy clay BH312 0.11-0.3 Fill: silty clay
 HB12
 0.11-0.3
 Pill: shyr day

 HB131
 0.55
 Pill: shyr day

 HB141
 0.2-0.4
 Pill: shyr day

 HB151
 0.2-0.4
 Pill: shyr day

 HB151
 0.5-0.55
 Pill: shyr day

 HB151
 0.5-0.55
 Pill: shyr day

 HB151
 0.5-0.55
 Pill: shyr day

 HB151
 0.5-0.56
 Pill: shyr day

 HB131
 0.3-0.5
 Pill: shyr day

 HB131
 0.3-0.5
 Pill: shyr day

 HB131
 0.3-0.5
 Pill: shyr day

Copyright Environmental Investigation Se

| | | | | | | | | | | S | DIL LABORA | | TS COMPARE | BLE D
D TO WASTE CLA
less stated othe | SSIFICATION GUIDEL | INES | | | | | | | | | | | |
|---------------------|-----------------|--------------------------------------|-----------|---------|----------|----------|----------|---------|----------|-----------|---------------|-------------|----------------------|---|--|---------------------------------|-------|--------------------------------|----------------------------------|----------------------------------|----------------------------------|---|--------------|--------------|---------|------------------|----------------------|
| | | | 1 | | | | METALS | | | | D. | AHs | | 00/00 | PESTICIDES | | Total | | | TRH | | | | BTEX CON | APOUNDS | | |
| | | | Arsenic | Cadmium | Chromium | | Lead | Mercury | Nickel | Zinc | Total
PAHs | B(a)P | Total
Endosulfans | | Total Moderately
Harmful ² | Total
Scheduled ³ | PCBs | C ₆ -C ₉ | C ₁₀ -C ₁₄ | C ₁₅ -C ₂₈ | C ₂₉ -C ₃₆ | Total | Benzene | Toluene | Ethyl | Total
Xylenes | ASBESTOS FIBRES |
| PQL - Envirolat | h Services | | 4 | 0.4 | 1 | 1 | 1 | 0.1 | 1 | 1 | FAIIS | 0.05 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 25 | 50 | 100 | 100 | C ₁₀ -C ₃₆
250 | 0.2 | 0.5 | 1 | 3 | 100 |
| General Solid \ | | | 100 | 20 | 100 | NSL | 100 | 0.1 | 40 | NSL | 200 | 0.03 | 60 | 4 | 250 | <50 | <50 | 650 | 50 | NSL | 100 | 10,000 | 10 | 288 | 600 | 1,000 | 100 |
| General Solid \ | | | 500 | 100 | 1900 | NSL | 1500 | 50 | 1050 | NSL | 200 | 10 | 108 | 7.5 | 250 | <50 | <50 | 650 | | NSL | | 10,000 | 18 | 518 | 1,080 | 1,800 | - |
| Restricted Soli | | 1 | 400 | 80 | 400 | NSL | 400 | 16 | 160 | NSL | 800 | 3.2 | 240 | 16 | 1000 | <50 | <50 | 2600 | | NSL | | 40,000 | 40 | 1,152 | 2,400 | 4,000 | - |
| Restricted Soli | id Waste SCC2 | 1 | 2000 | 400 | 7600 | NSL | 6000 | 200 | 4200 | NSL | 800 | 23 | 432 | 30 | 1000 | <50 | <50 | 2600 | | NSL | | 40,000 | 72 | 2,073 | 4,320 | 7,200 | - |
| Sample
Reference | Sample
Depth | Sample Description | | | | | | | | | | | | | | | | | | | | | | | | | |
| BH201 | 0.5-0.6 | Fill: silty clay | 9 | LPQL | 11 | 41 | 19 | LPQL | 15 | 110 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH202 | 0.2-0.4 | Fill: silty clay | 4 | LPQL | 10 | 37 | 16 | LPQL | 17 | 69 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH203 | 1.1-1.2 | Fill: silty clay | 4 | LPQL | 12 | 40 | 18 | LPQL | 10 | 74 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH204 | 0.4-0.6 | Fill: silty clay | LPQL | LPQL | 16 | 18 | 12 | LPQL | 9 | 35 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH204 | 1.3-1.5 | Silty clay | LPQL | LPQL | 13 | 40 | 18 | LPQL | 12 | 72 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | NA |
| BH205 | 0.2-0.4 | Fill: silty clay | 5 | LPQL | 20 | 39 | 26 | LPQL | 16 | 100 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH205 | 0.8-1.0 | Silty clay | LPQL | LPQL | 9 | 37 | 18 | LPQL | 50 | 130 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | NA |
| BH206 | 0.2-0.4 | Fill: silty clay | LPQL | LPQL | 12 | 55 | 19 | LPQL | 20 | 110 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH206 | 1.0-1.2 | Silty clay | LPQL | LPQL | 8 | 22 | 9 | LPQL | 34 | 120 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | NA |
| BH207 | 0.2-0.4 | Fill: sandy gravel | LPQL | LPQL | 16 | 71 | 13 | LPQL | 16 | 39 | 13.37 | 0.97 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | 450 | 1000 | 1450 | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH208 | 0.25-0.35 | Fill: silty clay | 5 | 7.3 | 32 | 58 | 43 | LPQL | 31 | 220 | 6.6 | 0.2 | LPQL | LPQL | LPQL | LPQL | 0.2 | LPQL | LPQL | 320 | 400 | 720 | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH209 | 0.2-0.3 | Fill: gravel | LPQL | LPQL | 38 | 56 | 13 | LPQL | 42 | 36 | 2.7 | 0.3 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | 120 | 380 | 500 | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH209 | 1.1-1.2 | Silty clay | LPQL | LPQL | 10 | 30 | 11 | LPQL | 7 | 60 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | NA |
| BH210 | 0.2-0.4 | Fill: sandy clay | 6 | LPQL | 9 | 40 | 16 | LPQL | 14 | 64 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH301 | 0.26-0.4 | Fill: silty sandy gravel | LPQL | LPQL | 27 | 74 | 10 | LPQL | 24 | 39 | 11.78 | 0.88 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | 280 | 730 | 1010 | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH301 | 3.0-3.2 | Fill: silty clay | 16 | LPQL | 26 | 15 | 22 | LPQL | 14 | 28 | LPQL | LPQL | NA | NA | NA | NA | NA | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | NA |
| BH302 | 0.25-0.45 | Fill: silty clay | 6 | LPQL | 16 | 39 | 19 | LPQL | 17 | 83 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH303 | 0.5-0.8 | Silty Clay | LPQL | LPQL | 9 | 11 | 10 | 0.2 | 10 | 34 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH304 | 0.15-0.3 | Fill: silty clay | LPQL | LPQL | 11 | 50 | 17 | LPQL | 17 | 110 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH305 | 0.15-0.35 | Fill: silty sandy clay | LPQL | LPQL | 17 | 41 | 17 | LPQL | 23 | 79 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH306 | 0.13-0.3 | Fill: silty clay | 4 | LPQL | 12 | 36 | 17 | LPQL | 15 | 68 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH306 | 3.0-3.2 | Fill: silty clay | 6 | LPQL | 27 | 18 | 23 | LPQL | 15 | 47 | LPQL | LPQL | NA | NA | NA | NA | NA | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | NA |
| BH308 | 0.3-0.6 | Fill: silty gravelly clay | 5 | LPQL | 15 | 42 | 19 | LPQL | 18 | 93 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH309 | 0.21-0.4 | Fill: silty clay | 6 | LPQL | 11 | 39 | 20 | LPQL | 13 | 75 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH309 | 2.0-2.2 | Fill: silty clay | 6 | LPQL | 23 | 40 | 22 | LPQL | 14 | 61 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH310 | 0.15-0.35 | Fill: silty clay | 6 | LPQL | 10 | 47 | 19 | LPQL | 12 | 65
38 | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | No asbestos detected |
| BH311 | 0.12-0.3 | Fill: silty sandy clay | 6 | LPQL | 2 | 15 | 6 | LPQL | 14 | | LPQL | LPQL | NA | NA | NA | NA | NA | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | NA |
| BH312
BH313 | 0.11-0.3 | Fill: silty clay | 7
LPQL | LPQL | 14 | 42
54 | 19
10 | LPQL | 17
70 | 96
130 | LPQL
4.8 | LPQL
0.2 | NA
NA | NA | NA | NA | NA | LPQL
LPQL | LPQL | LPQL
120 | LPQL
320 | LPQL
440 | LPQL | LPQL | LPQL | LPQL | NA |
| | | Fill: silty clay | 6 | LPQL | 17 | 41 | 10 | LPQL | 20 | 130 | 4.8
LPQL | | NA | NA | NA | NA | NA | LPQL | | | | | LPQL | | LPQL | | NA |
| BH314
BH314 | 0.2-0.4 | Fill: silty clay | 5 | LPQL | 13 | 31 | 21 | LPQL | 10 | 47 | LPQL | LPQL | NA | NA | NA | NA | NA | LPQL | LPQL | LPQL | LPQL | LPQL
LPQL | LPQL
LPQL | LPQL
LPQL | LPQL | LPQL | NA |
| BH314
BH315 | 0.5-0.95 | Fill: silty clay
Fill: silty clay | 6 | LPQL | 19 | 31 | 16 | LPQL | 9 | 53 | LPQL | LPQL | NA | NA | NA | NA | NA | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | NA |
| BH315
BH316 | 0.2-0.5 | Fill: silty clay | LPQL | LPQL | 11 | 78 | 10 | LPQL | 47 | 58 | LPQL | LPQL | NA | NA | NA | NA | NA | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | NA |
| BH310
BH317 | 0.18-0.38 | Fill: silty clay | 12 | LPQL | 4 | 39 | 12 | LPQL | 22 | 65 | LPQL | LPQL | NA | NA | NA | NA | NA | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | NA |
| BH301 | 0.18-0.38 | Fill: silty sandy gravel | NA | NA | 4 NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| | 3.6-3.8 | Silty clay | 6 | LPQL | 14 | 14 | 15 | LPQL | 4 | 14 | LPQL | LPQL | NA | NA | NA | NA | NA | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | NA |
| | 1.1-1.3 | Silty clay | LPQL | LPQL | 8 | 35 | 13 | LPQL | 2 | 22 | LPQL | LPQL | NA | NA | NA | NA | NA | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | NA |
| | 0.3-0.5 | Shale | LPQL | LPQL | 2 | 34 | 17 | LPQL | 13 | 14 | LPQL | LPQL | NA | NA | NA | NA | NA | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | NA |
| | 0.3-0.5 | Fill: sandy gravelly clay | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| | 3.6-3.8 | Shale | 7 | LPQL | 4 | 20 | 9 | LPQL | 5 | 26 | LPQL | LPQL | NA | NA | NA | NA | NA | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | NA |
| | 0.2-0.5 | Fill: silty clay | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| Total Numbe | | | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 24 | 24 | 24 | 24 | 24 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 20 |
| Maximum Va | alue | | 16 | 7.3 | 38 | 78 | 43 | 0.2 | 70 | 220 | 13.37 | 0.97 | LPQL | LPQL | LPQL | LPQL | 0.2 | LPQL | LPQL | 450 | 1000 | 1450 | LPQL | LPQL | LPQL | LPQL | NC |

Explanation:

¹ - NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014)

- Assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion

- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde

Concentration above the CT1 Concentration above SCC1

Concentration above the SCC2

Abbreviations:

- PAHs: Polycyclic Aromatic Hydrocarbons B(a)P: Benzo(a)pyrene PQL: Practical Quantitation Limit LPQL: Less than PQL PID: Photoionisation Detector PCBs: Polychlorinated Biphenyls
- UCL: Upper Level Confidence Limit on Mean Value CT: Contaminant Threshold NA: Not Analysed NC: Not Calculated NSL: No Set Limit SAC: Site Assessment Criteria TRH: Total Recoverable Hydrocarbons

VALUE

VALUE

VALUE

SCC: Specific Contaminant Concentration HILs: Health Investigation Levels NEPM: National Environmental Protection Measure BTEX: Monocyclic Aromatic Hydrocarbons

| TABLE E |
|--|
| SOIL LABORATORY TCLP RESULTS |
| All data in mg/L unless stated otherwise |

| | | | Arsenic | Cadmium | Chromium | Lead | Mercury | Nickel | B(a)P |
|---|-----------------|---------------------------|---------|---------|----------|------|---------|--------|-------|
| PQL - Envirola | b Services | | 0.05 | 0.01 | 0.01 | 0.03 | 0.0005 | 0.02 | 0.001 |
| TCLP1 - General Solid Waste ¹ | | 5 | 1 | 5 | 5 | 0.2 | 2 | 0.04 | |
| TCLP2 - Restricted Solid Waste ¹ | | 20 | 4 | 20 | 20 | 0.8 | 8 | 0.16 | |
| TCLP3 - Hazardous Waste ¹ | | >20 | >4 | >20 | >20 | >0.8 | >8 | >0.16 | |
| Sample
Reference | Sample
Depth | Sample Description | | | | | | | |
| BH205 | 0.8-1.0 | Fill: silty clay | NA | NA | NA | NA | NA | 0.03 | NA |
| BH207 | 0.2-0.4 | Fill: sandy gravel | NA | NA | NA | NA | NA | NA | LPQL |
| BH209 | 0.2-0.3 | Fill: gravel | NA | NA | NA | NA | NA | 0.04 | NA |
| BH301 | 0.26-0.4 | Fill: silty sandy gravel | NA | NA | NA | NA | NA | NA | LPQL |
| BH306 | 3.6-3.8 | Silty clay | NA | NA | NA | NA | NA | NA | NA |
| BH308 | 1.1-1.3 | Silty clay | NA | NA | NA | NA | NA | NA | NA |
| BH311 | 0.3-0.5 | Shale | NA | NA | NA | NA | NA | NA | NA |
| BH313 | 0.3-0.5 | Fill: sandy gravelly clay | NA | NA | NA | NA | NA | 0.04 | NA |
| BH313 | 3.6-3.8 | Shale | NA | NA | NA | NA | NA | NA | NA |
| BH316 | 0.2-0.5 | Fill: silty clay | NA | NA | NA | NA | NA | 0.07 | NA |
| Total Numb | er of samples | | 0 | 0 | 0 | 0 | 0 | 4 | 2 |
| Maximum Value | | LPQL | LPQL | LPQL | LPQL | LPQL | 0.07 | LPQL | |

Explanation:

1 - NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014)

General Solid Waste Restricted Solid Waste Hazardous Waste VALUE VALUE VALUE

Abbreviations:

PQL: Practical Quantitation Limit LPQL: Less than PQL B(a)P: Benzo(a)pyrene NC: Not Calculated NA: Not Analysed TCLP: Toxicity Characteristics Leaching Procedure

| TABLE F
GROUNDWATER LABORATORY RESULTS COMPARED TO HSLs
All data in µg/L unless stated otherwise | | | | | | | | | | | |
|---|---|--|---------------------|--------------------------------------|--|---------------|-----------|--------------|---------|-------------|------------------|
| | | | | C ₆ -C ₁₀ (F1) | >C ₁₀ -C ₁₆ (F2) | Benzene | Toluene | Ethylbenzene | Xylenes | Naphthalene | |
| PQL - Envirolab | Services | | | 10 | 50 | 1 | 1 | 1 | 3 | 1 | PID ² |
| and Use Category ¹ | | | | | COMM | MERCIAL/INDU | STRIAL | | | | |
| Sample
Reference | Water Depth | Depth Category ³ | Soil Category | | | | | | | | |
| MW301 | 4.57 | 4m to <8m | Clay | LPQL | 69 | LPQL | LPQL | LPQL | LPQL | LPQL | 0 |
| MW302 | 3.99 | 2m to <4m | Clay | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | 0 |
| MW303 | 3.22 | 2m to <4m | Clay | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | LPQL | 0 |
| | Total Number of Samples 3 3 3 3 3 3 3 Maximum Value LPQL 69 LPQL < | | | | | | 3
LPQL | | | | |
| 2 - Field PID val | ues obtained fro | Levels (GILs): NEPN
om the monitroing
quired | | during the invest | igation | | | | | | |
| The guideline c | orresponding to | the elevated valu | e is highlighted ir | n grey in the Site | Assessment Criteria | a Table below | | | | | |
| Abbreviations:UCL: Upper Level Confidence Limit on Mean ValuePQL: Practical Quantitation LimitHSLs: Health Screening LevelsLPQL: Less than PQLNA: Not AnalysedSAC: Site Assessment CriteriaNC: Not CalculatedNEPM: National Environmental Protection MeasureNL: Not LimitingSSA: Site Specific Assessment | | | | | | | | | | | |

HSL GROUNDWATER ASSESSMENT CRITERIA

| | | | | C ₆ -C ₁₀ (F1) | >C ₁₀ -C ₁₆ (F2) | Benzene | Toluene | Ethylbenzene | Xylenes | Naphthalene |
|-----------------|------------------|------------------------------|---------------|--------------------------------------|--|---------|---------|--------------|---------|-------------|
| PQL - Envirolab | Services | | | 10 50 1 1 3 | | | | 1 | | |
| Land Use Catego | ory ¹ | | | COMMERCIAL/INDUSTRIAL | | | | | | |
| Sample | Water Depth | Doubh Cotorours ³ | Soil Catagory | | | | | | | |
| Reference | water Depth | Depth Category ³ | Son Category | | | | | | | |
| MW301 | 4.57 | 4m to <8m | Clay | NL | NL | 30000 | NL | NL | NL | NL |
| MW302 | 3.99 | 2m to <4m | Clay | NL | NL | 30000 | NL | NL | NL | NL |
| MW303 | 3.22 | 2m to <4m | Clay | NL | NL | 30000 | NL | NL | NL | NL |

Copyright Environmental Investigation Services

| | PQL | GIL - ANZECC | GIL - | | SAMPLES | |
|---|-----------------------|---------------------------------------|--------------------------------------|--------------|-------------|-------------|
| | Envirolab
Services | 2000 ¹
Fresh Waters | ADWG ² | MW301 | MW302 | MW303 |
| norganic Compounds and Parameters | 0.1 | | d | <u> </u> | 7 | - |
| DH
Electrical Conductivity (μS/cm) | 0.1 | 6.5 - 8.5 '
NSL | 6.5 - 8.5 ^d
NSL | 6.8
2800 | 7 19000 | 7 21000 |
| Metals and Metalloids | 1 | NSE | NGE | 2800 | 19000 | 21000 |
| Arsenic (As III) | 1 | 24 | 10 | LPQL | 1 | 3 |
| Cadmium
Chromium (total) | 0.1 | 0.2
1 ^{a^} | 2
50 ^{a^} | LPQL
LPQL | 0.3
LPQL | 0.7
LPQL |
| Copper | 1 | 1.4 | 2000 | 6 | LPQL | LPQL |
| Lead | 1 | 3.4 | 10 | LPQL | LPQL | LPQL |
| Total Mercury (inorganic) | 0.05 | 0.06 | 1 | LPQL | LPQL | LPQL |
| Vickel
Zinc | 1 | 11
8 | 20
3000 ^d | 33
38 | 22
18 | 27
28 |
| Total Recoverable Hydrocarbons (TRH) | 1 | 0 | 5000 | 30 | 10 | 20 |
| C ₆ -C ₉ (assessed using F1) | 10 | NSL | NSL | LPQL | LPQL | LPQL |
| ≻C9-C14 (assessed using F2) Monocyclic Aromatic Hydrocarbons (BTEX) | 50
Compounds) | NSL | NSL | 69 | LPQL | LPQL |
| Benzene | 1 | 950 | 1 | LPQL | LPQL | LPQL |
| Toluene | 1 | 180 ^a | 800 | LPQL | LPQL | LPQL |
| Ethylbenzene | 1 | 80 ^a | 300 | LPQL | LPQL | LPQL |
| m+p-xylene | 2 | 75 ^m
350 ^a | NSL
NSL | LPQL | LPQL | LPQL |
| o-xylene
Fotal xylenes | 2 | 350 "
NSL | 600 | LPQL | LPQL | LPQL |
| /olatile Organic Compounds (VOCs), includ | | | | - | | |
| Dichlorodifluoromethane | 10 | NSL | 200 ^b | LPQL | LPQL | LPQL |
| Chloromethane | 10 | NSL
100 ^a | 190 ^b | LPQL | LPQL | LPQL |
| Vinyl Chloride
Bromomethane | 10 | 100 °
NSL | 0.3
7.5 ^b | LPQL | LPQL | LPQL |
| Chloroethane | 10 | NSL | NSL | LPQL | LPQL | LPQL |
| Frichlorofluoromethane | 10 | NSL | 5200 ^b | LPQL | LPQL | LPQL |
| I,1-Dichloroethene | 1 | 700 ^a | 30 | LPQL | LPQL | LPQL |
| Frans-1,2-dichloroethene | 1 | NSL
90 ^a | 360 ^b | LPQL | LPQL | LPQL |
| 1,1-dichloroethane
Cis-1,2-dichloroethene | 1 | 90 -
NSL | 2.8 ^b | LPQL | LPQL | LPQL |
| Bromochloromethane | 1 | NSL | 83 ^b | LPQL | LPQL | LPQL |
| Chloroform | 1 | 370 ^a | 0.22 ^b | LPQL | LPQL | LPQL |
| 2,2-dichloropropane | 1 | NSL | NSL | LPQL | LPQL | LPQL |
| 1,2-dichloroethane | 1 | 1900 ^a
270 ^a | 3
8000 ^b | LPQL | LPQL | LPQL |
| 1,1,1-trichloroethane
1,1-dichloropropene | 1 | NSL | NSL | LPQL | LPQL | LPQL |
| Cyclohexane | 1 | NSL | 13000 ^b | LPQL | LPQL | LPQL |
| Carbon tetrachloride | 1 | 240 ^a | NSL | LPQL | LPQL | LPQL |
| Benzene | 1 | see BTEX | see BTEX | LPQL | LPQL | LPQL |
| Dibromomethane
L,2-dichloropropane | 1 | NSL
900 ^a | 8.3 ^b | LPQL | LPQL | LPQL |
| Trichloroethene | 1 | 330 ⁿ | NSL | LPQL | LPQL | LPQL |
| Bromodichloromethane | 1 | NSL | 0.13 ^b | LPQL | LPQL | LPQL |
| trans-1,3-dichloropropene | 1 | 0.1 ^p | 0.47 ^b | LPQL | LPQL | LPQL |
| cis-1,3-dichloropropene | 1 | 0.1 ^p | 0.47 ^b | LPQL | LPQL | LPQL |
| 1,1,2-trichloroethane | 1 | 6500
see BTEX | 0.28 b
see BTEX | LPQL | LPQL | LPQL |
| 1,3-dichloropropane | 1 | 1100 ^a | 370 ^b | LPQL | LPQL | LPQL |
| Dibromochloromethane | 1 | NSL | 0.87 ^b | LPQL | LPQL | LPQL |
| 1,2-dibromoethane | 1 | NSL | 0.0075 ^b | LPQL | LPQL | LPQL |
| Fetrachloroethene | 1 | 70 ^a
400 ^q | 11 ^b
0.57 ^b | LPQL | LPQL | LPQL |
| Chlorobenzene | 1 | 55 ^a | 300 | LPQL | LPQL | LPQL |
| Ethylbenzene | 1 | see BTEX | see BTEX | LPQL | LPQL | LPQL |
| Bromoform | 1 | NSL | 3.3 ^b | LPQL | LPQL | LPQL |
| n+p-xylene | 2 | see BTEX
NSL | see BTEX
1200 ^b | LPQL | LPQL | LPQL |
| Styrene
1,1,2,2-tetrachloroethane | 1 | 400 ^a | 1200 ° | LPQL | LPQL | LPQL |
| p-xylene | 1 | see BTEX | see BTEX | LPQL | LPQL | LPQL |
| L,2,3-trichloropropane | 1 | NSL | 0.00075 ^b | LPQL | LPQL | LPQL |
| sopropylbenzene | 1 | 30
NG | NSL 63 b | LPQL | LPQL | LPQL |
| Bromobenzene
n-propyl benzene | 1 | NSL | 62 ^b
660 ^b | LPQL | LPQL | LPQL |
| 2-chlorotoluene | 1 | NSL | 240 ^b | LPQL | LPQL | LPQL |
| 1-chlorotoluene | 1 | NSL | 240 ^b | LPQL | LPQL | LPQL |
| I,3,5-trimethyl benzene | 1 | NSL | 120 ^b | LPQL | LPQL | LPQL |
| Fert-butyl benzene | 1 | NSL | NSL
15 ^b | LPQL | LPQL | LPQL |
| I,2,4-trimethyl benzene
I,3-dichlorobenzene | 1 | 260 ^a | 15 ^d | LPQL | LPQL | LPQL |
| Sec-butyl benzene | 1 | NSL | NSL | LPQL | LPQL | LPQL |
| L,4-dichlorobenzene | 1 | 60 ^a | 40 | LPQL | LPQL | LPQL |
| 1-isopropyl toluene | 1 | NSL | NSL 1500 | LPQL | LPQL | LPQL |
| L,2-dichlorobenzene
n-butyl benzene | 1 | 160 ^a
NSL | 1500
NSL | LPQL | LPQL | LPQL |
| l,2-dibromo-3-chloropropane | 1 | NSL | 0.00033 ^b | LPQL | LPQL | LPQL |
| I,2,4-trichlorobenzene | 1 | 85 | 1.2 ^b | LPQL | LPQL | LPQL |
| lexachlorobutadiene | 1 | NSL | 0.14 ^b | LPQL | LPQL | LPQL |
| ,2,3-trichlorobenzene | 1 | 3 | 7 ^b | LPQL | LPQL | LPQL |
| Polycyclic Aromatic Hydrocarbons (PAHs)
Naphthalene | 0.2 | 16 ^a | 6.1 ^b | LPQL | LPQL | LPQL |
| Acenaphthylene | 0.1 | NSL | NSL | LPQL | LPQL | LPQL |
| Acenaphthene | 0.1 | NSL | 530 ^b | LPQL | LPQL | LPQL |
| luorene | 0.1 | NSL | 290 ^b | LPQL | LPQL | LPQL |
| Phenanthrene | 0.1 | 0.6 ^c | NSL
1800 ^b | LPQL | LPQL | LPQL |
| Anthracene
Fluoranthene | 0.1 | 0.01 ° | 1800 °
800 ^b | LPQL | LPQL | LPQL |
| Pyrene | 0.1 | NSL | 120 ^b | LPQL | LPQL | LPQL |
| Benzo(a)anthracene | 0.1 | NSL | 0.012 ^b | LPQL | LPQL | LPQL |
| | | | b | | | |
| Chrysene | 0.1 | NSL | 3.4 ^b | LPQL | LPQL | LPQL |

| Chrysene | 0.1 | NSL | 3.4 | LPQL | LPQL | LPQL |
|--------------------------|-----|------------------|---------------------|------|------|------|
| Benzo(b,j+k)fluoranthene | 0.2 | NSL | 0.034 ^{br} | LPQL | LPQL | LPQL |
| Benzo(a)pyrene | 0.1 | 0.1 ^c | 0.01 | LPQL | LPQL | LPQL |
| Indeno(1,2,3-c,d)pyrene | 0.1 | NSL | NSL | LPQL | LPQL | LPQL |
| Dibenzo(a,h)anthracene | 0.1 | NSL | NSL | LPQL | LPQL | LPQL |
| Benzo(g,h,i)perylene | 0.1 | NSL | NSL | LPQL | LPQL | LPQL |

Explanation:

1 - ANZECC Australian Water Quality Guidelines for Fresh Waters (ANZECC 2000) - Trigger Values for protection of 95% of species

2 - NHMRC Australian Drinking Water Guidelines (ADWG 2011)

a - In the absence of a high reliability guideline concentration, the moderate or low reliability guideline concentration has been quoted

a^ - The GIL for Cr VI has been adopted as a conservative measure

b - In the absence of Australian guidelines, the USEPA Region 9 Regional Screening Levels for tapwater (May 2016 tables) have been adopted as a preliminary screening tool.

c - 99% trigger values adopted due to the potential for bioaccumulation effects

In the absence of a health guideline the aesthetic guideline concentration has been quoted

m - Guideline value adopted for m-Xylene. We note that the m-Xylene guideline value is 75ug/L and the p-Xylene guideline value is 200ug/L. However these two isomers cannot be

distinguished analytically, therefore EIS have adopted the more conservative guideline value

n - In the absence of a guideline value for Trichloroethene, the guideline concentration for 1,1,2 Trichloroethylene has been adopted

p - In the absence of a guideline value for cis or trans 1,3 Dichloropropene, the guideline concentration for 1,3 Dichloropropene has been adopted

q - In the absence of a guideline concentration for 1,1,1,2 Tetrachloroethane, the guideline concentration for 1,1,2,2 Tetrachloroethane has been adopted

- The more conservative value for Benzo(b)fluoranthene has been adopted

Concentration above the GIL

Abbreviations:

| NA: Not Analysed | PQL: Practical Quantitation Limit |
|--|--|
| NSL: No Set Limit | LPQL: Less than Practical Quantitation Limit |
| GIL - Groundwater Investigation Levels | (-) : Not Applicable |

Copyright Environmental Investigation Services

Г

| SOIL | TABL
INTRA-LABORATORY DUPLIC | E H (a)
ATE RESULTS a | & RPD CALCU | JLATIONS | | | | | | |
|--|--|--------------------------|-------------|----------|------|----------|--|--|--|--|
| All results in mg/kg unless stated otherwise | | | | | | | | | | |
| SAMPLE | ANALYSIS | Envirolab
PQL | INITIAL | REPEAT | MEAN | RPD
% | | | | |
| Sample Ref = BH302 (0.25-0.45m) | Arsenic | 4 | 6 | 7 | 6.5 | 15 | | | | |
| Dup Ref = JDC2 | Cadmium | 0.4 | LPQL | LPQL | NC | NC | | | | |
| | Chromium | 1 | 16 | 12 | 14.0 | 29 | | | | |
| Envirolab Report: 164998 | Copper | 1 | 39 | 43 | 41.0 | 10 | | | | |
| | Lead | 1 | 19 | 20 | 19.5 | 5 | | | | |
| | Mercury | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Nickel | 1 | 17 | 18 | 17.5 | 6 | | | | |
| | Zinc | 1 | 83 | 81 | 82.0 | 2 | | | | |
| | Naphthalene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Acenaphthylene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Acenaphthene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Fluorene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Phenanthrene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Anthracene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Fluoranthene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Pyrene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Benzo(a)anthracene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Chrysene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Benzo(b,j+k)fluoranthene | 0.2 | LPQL | LPQL | NC | NC | | | | |
| | Benzo(a)pyrene | 0.05 | LPQL | LPQL | NC | NC | | | | |
| | Indeno(123-cd)pyrene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Dibenzo(ah)anthracene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Benzo(ghi)perylene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | TRH C ₆ -C ₁₀ (F1) | 25 | LPQL | LPQL | NC | NC | | | | |
| | TRH >C ₁₀ -C ₁₆ (F2) | 50 | LPQL | LPQL | NC | NC | | | | |
| | TRH >C ₁₆ -C ₃₄ (F3) | 100 | LPQL | LPQL | NC | NC | | | | |
| | TRH >C ₃₄ -C ₄₀ (F4) | 100 | LPQL | LPQL | NC | NC | | | | |
| | Benzene | 0.5 | LPQL | LPQL | NC | NC | | | | |
| | Toluene | 0.5 | LPQL | LPQL | NC | NC | | | | |
| | Ethylbenzene | 1 | LPQL | LPQL | NC | NC | | | | |
| | m+p-xylene | 2 | LPQL | LPQL | NC | NC | | | | |
| | o-xylene | 1 | LPQL | LPQL | NC | NC | | | | |

Explanation:

The RPD value is calculated as the absolute value of the difference between the initial and

repeat results divided by the average value expressed as a percentage. The following acceptance

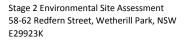
criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value <= 50% are acceptable

Results between 5 & 10 times PQL = RPD value <= 75% are acceptable

Results < 5 times PQL = RPD value <= 100% are acceptable

If result is LPQL then 50% of the PQL is used for the calculation


RPD Results Above the Acceptance Criteria

VALUE

Abbreviations:

PQL: Practical Quantitation Limit LPQL: Less than PQL NA: Not Analysed NC: Not Calculated OCP: Organochlorine Pesticides OPP: Organophosphorus Pesticides PCBs: Polychlorinated Biphenyls

TRH: Total Recoverable Hydrocarbons

| TABLE H (b)
SOIL INTRA-LABORATORY DUPLICATE RESULTS & RPD CALCULATIONS
All results in mg/kg unless stated otherwise | | | | | | | | | | |
|---|--------------------------|-----------|---------|--------|------|-----|--|--|--|--|
| SAMPLE | ANALYSIS | Envirolab | INITIAL | REPEAT | MEAN | RPD | | | | |
| | | PQL | | | | % | | | | |
| Sample Ref = BH309 (0.21-0.4m) | Arsenic | 4 | 6 | 6 | 6.0 | 0 | | | | |
| Dup Ref = HL2 | Cadmium | 0.4 | LPQL | LPQL | NC | NC | | | | |
| | Chromium | 1 | 11 | 12 | 11.5 | 9 | | | | |
| Envirolab Report: 164998 | Copper | 1 | 39 | 40 | 39.5 | 3 | | | | |
| | Lead | 1 | 20 | 20 | 20.0 | 0 | | | | |
| | Mercury | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Nickel | 1 | 13 | 14 | 13.5 | 7 | | | | |
| | Zinc | 1 | 75 | 77 | 76.0 | 3 | | | | |
| | Naphthalene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Acenaphthylene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Acenaphthene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Fluorene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Phenanthrene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Anthracene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Fluoranthene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Pyrene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Benzo(a)anthracene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Chrysene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Benzo(b,j+k)fluoranthene | 0.2 | LPQL | LPQL | NC | NC | | | | |
| | Benzo(a)pyrene | 0.05 | LPQL | LPQL | NC | NC | | | | |
| | Indeno(123-cd)pyrene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Dibenzo(ah)anthracene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | Benzo(ghi)perylene | 0.1 | LPQL | LPQL | NC | NC | | | | |
| | TRH C6-C10 (F1) | 25 | LPQL | LPQL | NC | NC | | | | |
| | TRH >C10-C16 (F2) | 50 | LPQL | LPQL | NC | NC | | | | |
| | TRH >C16-C34 (F3) | 100 | LPQL | LPQL | NC | NC | | | | |
| | TRH >C34-C40 (F4) | 100 | LPQL | LPQL | NC | NC | | | | |
| | Benzene | 0.5 | LPQL | LPQL | NC | NC | | | | |
| | Toluene | 0.5 | LPQL | LPQL | NC | NC | | | | |
| | Ethylbenzene | 1 | LPQL | LPQL | NC | NC | | | | |
| | m+p-xylene | 2 | LPQL | LPQL | NC | NC | | | | |
| | o-xylene | 1 | LPQL | LPQL | NC | NC | | | | |

Explanation:

The RPD value is calculated as the absolute value of the difference between the initial and

repeat results divided by the average value expressed as a percentage. The following acceptance

criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value <= 50% are acceptable

Results between 5 & 10 times PQL = RPD value <= 75% are acceptable

Results < 5 times PQL = RPD value <= 100% are acceptable

If result is LPQL then 50% of the PQL is used for the calculation

RPD Results Above the Acceptance Criteria

VALUE

Abbreviations:

PQL: Practical Quantitation Limit LPQL: Less than PQL NA: Not Analysed NC: Not Calculated OCP: Organochlorine Pesticides OPP: Organophosphorus Pesticides PCBs: Polychlorinated Biphenyls

TRH: Total Recoverable Hydrocarbons

| | SOIL INTER-LABORATORY | TABLE I | | ΔΙ CUI ΔΤΙΟΝ | ç | | |
|-------------------------------|--------------------------|------------------|----------------------|--------------|--------|-------|----------|
| | | | s stated otherwis | | 5 | | |
| SAMPLE | ANALYSIS | Envirolab
PQL | Envirolab VIC
PQL | INITIAL | REPEAT | MEAN | RPD
% |
| Sample Ref = BH301 (0.26-0.4) | Arsenic | 4 | ۲QL
4 | LPQL | LPQL | NC | NC |
| Dup Ref = JDC1 | Cadmium | 0.4 | 0.4 | LPQL | LPQL | NC | NC |
| | Chromium | 1 | 1 | 27 | 210 | 118.5 | 154 |
| nvirolab Report: 164998 | Copper | 1 | 1 | 74 | 70 | 72.0 | 6 |
| nvirolab VIC Report: 10552 | Lead | 1 | 1 | 10 | 10 | 10.0 | 0 |
| · | Mercury | 0.1 | 0.1 | LPQL | LPQL | NC | NC |
| | Nickel | 1 | 1 | 24 | 19 | 21.5 | 23 |
| | Zinc | 1 | 1 | 39 | 34 | 36.5 | 14 |
| | Naphthalene | 0.1 | 0.1 | LPQL | LPQL | NC | NC |
| | Acenaphthylene | 0.1 | 0.1 | LPQL | 0.2 | 0.1 | 120 |
| | Acenaphthene | 0.1 | 0.1 | LPQL | LPQL | NC | NC |
| | Fluorene | 0.1 | 0.1 | LPQL | LPQL | NC | NC |
| | Phenanthrene | 0.1 | 0.1 | 1 | 1 | 1.0 | 0 |
| | Anthracene | 0.1 | 0.1 | 0.3 | 0.3 | 0.3 | 0 |
| | Fluoranthene | 0.1 | 0.1 | 2.5 | 2.6 | 2.6 | 4 |
| | Pyrene | 0.1 | 0.1 | 2.7 | 2.8 | 2.8 | 4 |
| | Benzo(a)anthracene | 0.1 | 0.1 | 1.1 | 1.1 | 1.1 | 0 |
| | Chrysene | 0.1 | 0.1 | 0.9 | 1.3 | 1.1 | 36 |
| | Benzo(b,j+k)fluoranthene | 0.2 | 0.2 | 1 | 1.9 | 1.5 | 62 |
| | Benzo(a)pyrene | 0.05 | 0.05 | 0.88 | 1.1 | 1.0 | 22 |
| | Indeno(123-cd)pyrene | 0.1 | 0.1 | 0.6 | 0.6 | 0.6 | 0 |
| | Dibenzo(ah)anthracene | 0.1 | 0.1 | LPQL | 0.2 | 0.1 | 120 |
| | Benzo(ghi)perylene | 0.1 | 0.1 | 0.8 | 0.8 | 0.8 | 0 |
| | Benzo(a)pyrene TEQ | 0.5 | 0.5 | 1.2 | 1.7 | 1.5 | 34 |
| | TRH C6-C10 (F1) | 25 | 25 | LPQL | LPQL | NC | NC |
| | TRH >C10-C16 (F2) | 50 | 50 | LPQL | LPQL | NC | NC |
| | TRH >C16-C34 (F3) | 100 | 100 | 700 | 390 | 545.0 | 57 |
| | TRH >C34-C40 (F4) | 100 | 100 | 920 | 560 | 740.0 | 49 |
| | Benzene | 0.5 | 0.5 | LPQL | LPQL | NC | NC |
| | Toluene | 0.5 | 0.5 | LPQL | LPQL | NC | NC |
| | Ethylbenzene | 1 | 1 | LPQL | LPQL | NC | NC |
| | m+p-xylene | 2 | 2 | LPQL | LPQL | NC | NC |
| | o-xylene | 1 | 1 | LPQL | LPQL | NC | NC |

Explanation:

The RPD value is calculated as the absolute value of the difference between the initial and

repeat results divided by the average value expressed as a percentage. The following acceptance

criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value <= 50% are acceptable

Results between 5 & 10 times PQL = RPD value <= 75% are acceptable

Results < 5 times PQL = RPD value <= 100% are acceptable

If result is LPQL then 50% of the PQL is used for the calculation

RPD Results Above the Acceptance Criteria

VALUE

Abbreviations:

 PQL: Practical Quantitation Limit
 OCP: Organochlorine Pesticides

 LPQL: Less than PQL
 OPP: Organophosphorus Pesticides

 NA: Not Analysed
 PCBs: Polychlorinated Biphenyls

 NC: Not Calculated
 TRH: Total Recoverable Hydrocarbons

Г

| GROUM | TAI
NDWATER INTRA-LABORATORY D | BLE J
UPLICATE RES | ULTS & RPD | CALCULATION | IS | | | | |
|---|-----------------------------------|-----------------------|------------|-------------|------|----------|--|--|--|
| All results in µg/L unless stated otherwise | | | | | | | | | |
| SAMPLE | ANALYSIS | Envirolab
PQL | INITIAL | REPEAT | MEAN | RPD
% | | | |
| ample Ref = MW301 | Arsenic | 1 | LPQL | LPQL | NC | NC | | | |
| Dup Ref = JDCW | Cadmium | 0.1 | LPQL | LPQL | NC | NC | | | |
| | Chromium | 1 | LPQL | LPQL | NC | NC | | | |
| nvirolab Report: 165176 | Copper | 1 | 6 | 8 | 7 | 29 | | | |
| | Lead | 1 | LPQL | LPQL | NC | NC | | | |
| | Mercury | 0.05 | LPQL | LPQL | NC | NC | | | |
| | Nickel | 1 | 33 | 35 | 34 | 6 | | | |
| | Zinc | 1 | 38 | 36 | 37 | 5 | | | |
| | Naphthalene | 0.1 | LPQL | LPQL | NC | NC | | | |
| | Acenaphthylene | 0.1 | LPQL | LPQL | NC | NC | | | |
| | Acenaphthene | 0.1 | LPQL | LPQL | NC | NC | | | |
| | Fluorene | 0.1 | LPQL | LPQL | NC | NC | | | |
| | Phenanthrene | 0.1 | LPQL | LPQL | NC | NC | | | |
| | Anthracene | 0.1 | LPQL | LPQL | NC | NC | | | |
| | Fluoranthene | 0.1 | LPQL | LPQL | NC | NC | | | |
| | Pyrene | 0.1 | LPQL | LPQL | NC | NC | | | |
| | Benzo(a)anthracene | 0.1 | LPQL | LPQL | NC | NC | | | |
| | Chrysene | 0.1 | LPQL | LPQL | NC | NC | | | |
| | Benzo(b,j+k)fluoranthene | 0.2 | LPQL | LPQL | NC | NC | | | |
| | Benzo(a)pyrene | 0.1 | LPQL | LPQL | NC | NC | | | |
| | Indeno(123-cd)pyrene | 0.1 | LPQL | LPQL | NC | NC | | | |
| | Dibenzo(ah)anthracene | 0.1 | LPQL | LPQL | NC | NC | | | |
| | Benzo(ghi)perylene | 0.1 | LPQL | LPQL | NC | NC | | | |
| | TRH C6-C10 (F1) | 10 | LPQL | LPQL | NC | NC | | | |
| | TRH >C10-C16 (F2) | 50 | 69 | 88 | 79 | 24 | | | |
| | TRH >C16-C34 (F3) | 100 | 350 | 470 | 410 | 29 | | | |
| | TRH >C34-C40 (F4) | 100 | LPQL | LPQL | NC | NC | | | |
| | Benzene | 1 | LPQL | LPQL | NC | NC | | | |
| | Toluene | 1 | LPQL | LPQL | NC | NC | | | |
| | Ethylbenzene | 1 | LPQL | LPQL | NC | NC | | | |
| | m+p-xylene | 2 | LPQL | LPQL | NC | NC | | | |
| | o-xylene | 1 | LPQL | LPQL | NC | NC | | | |

Explanation:

The RPD value is calculated as the absolute value of the difference between the initial and

repeat results divided by the average value expressed as a percentage. The following acceptance

criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value <= 50% are acceptable

Results between 5 & 10 times PQL = RPD value <= 75% are acceptable

Results < 5 times PQL = RPD value <= 100% are acceptable

If result is LPQL then 50% of the PQL is used for the calculation

RPD Results Above the Acceptance Criteria

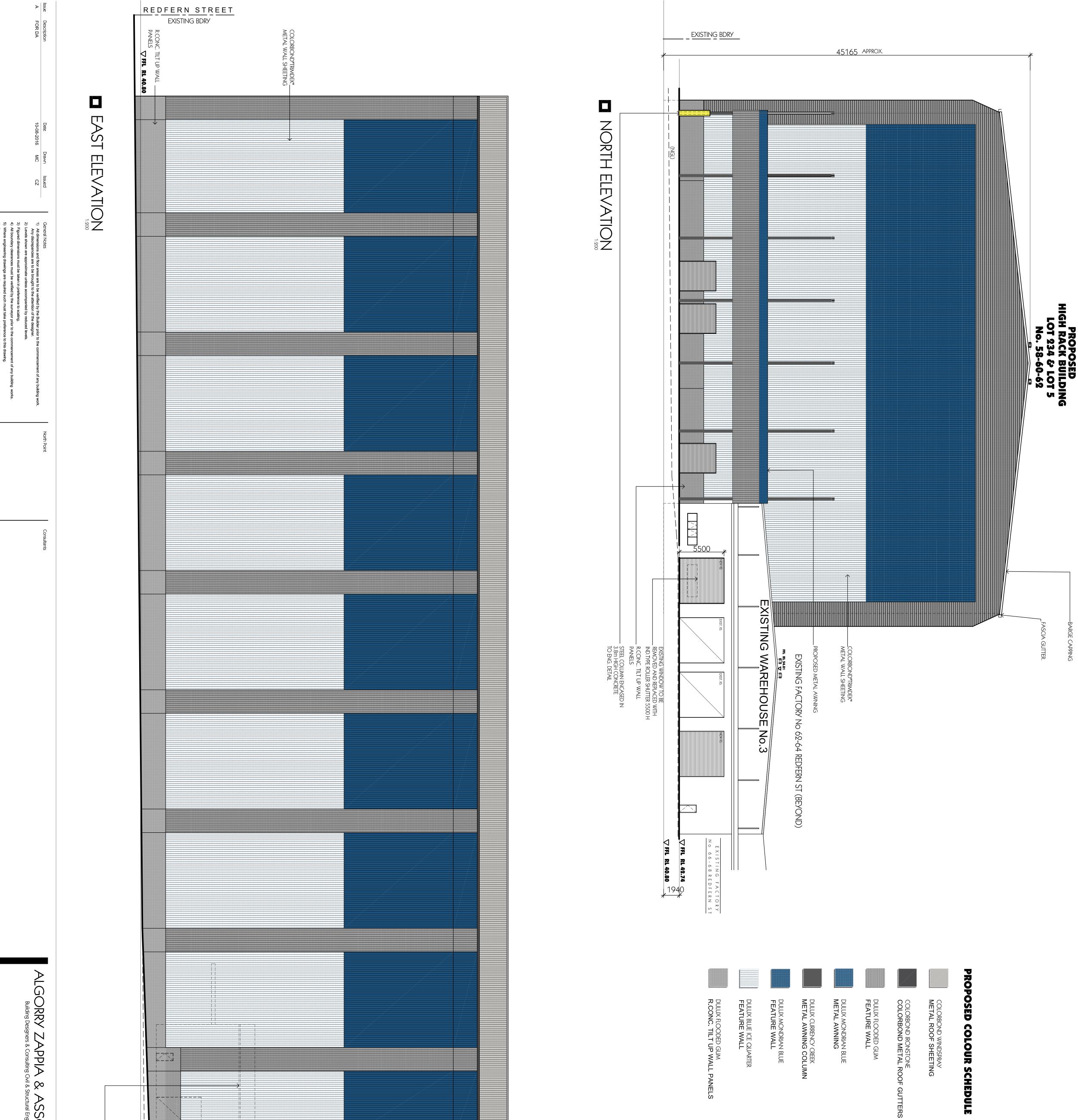
VALUE

Abbreviations:

PQL: Practical Quantitation Limit LPQL: Less than PQL NA: Not Analysed NC: Not Calculated OCP: Organochlorine Pesticides OPP: Organophosphorus Pesticides PCBs: Polychlorinated Biphenyls

TRH: Total Recoverable Hydrocarbons

| TABLE K
SUMMARY OF FIELD QA/QC RESULTS | | | | | | | | | | |
|--|-----------|-----------------|-------------------|------------------|--|--|--|--|--|--|
| | Enviro | lab PQL | TB1 ^s | TS1 ^s | | | | | | |
| ANALYSIS | LINITO | | 6/04/2017 | 12/04/2017 | | | | | | |
| | mg/kg | μg/L | | | | | | | | |
| | 1116/ 116 | ₩6/ L | mg/kg | % Recovery | | | | | | |
| Benzene | 1 | 1 | LPQL | 93 | | | | | | |
| Toluene | 1 | 1 | LPQL | 94 | | | | | | |
| Ethylbenzene | 1 | 1 | LPQL | 100 | | | | | | |
| m+p-xylene | 2 | 2 | LPQL | 101 | | | | | | |
| o-xylene | 1 | 1 | LPQL | 100 | | | | | | |
| <u>Explanation:</u>
^W Sample type (water)
^S Sample type (sand)
BTEX concentrations in trip spikes are presented as % recovery | | | | | | | | | | |
| Values above PQLs/Acceptance | criteria | VALUE | | | | | | | | |
| Abbreviations: | | | | | | | | | | |
| PQL: Practical Quantitation Limi | t | TB: Trip Blank | | | | | | | | |
| LPQL: Less than PQL | | TS: Trip Spike | | | | | | | | |
| NA: Not Analysed | | RS: Rinsate San | nple | | | | | | | |
| NC: Not Calculated | | TRH: Total Reco | overable Hydrocar | bons | | | | | | |

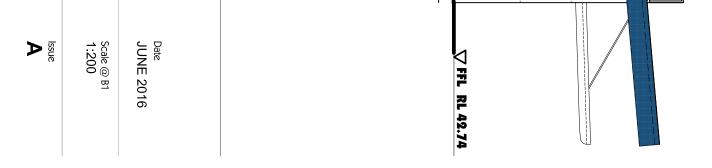

REPORT APPENDICES

Appendix A: Site Information

Proposed Development Plans

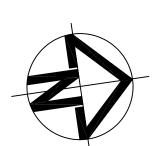
| a Suite 4, Level 1, 84 Bathurst Street, Liverpool, NSW 2170 P.O. Box 825, Liverpool Business Centre, NSW 1871 t 9602 3133 / 9602 0303 f 9601 6903 e admin@algorryzappia.com.au v www.algorryzappia.com.au | ALGORRY ZAPPIA & ASSOCIATES PTV.LTD.
Building Designers & Consulting Civil & Structural Engineers | | | | |
|---|--|--|----------------|--|----------------|
| ABC Tissue Products | t
OPOSED EXPANSION T
LOT 234 DP 1037039, LOT 5 DP
THERILL PARK | PROPOSED METAL AWNING
WITH 5° ROOF PITCH TO ENG. DETAIL
EXISTING STRUCTURE BEYOND
TO BE DEMOLISHED
STEEL COLUMN ENCASED IN
3.8m HIGH CONCRETE
TO ENG. DETAIL
IND. TYPE ROLLER SHUTTERS 5500 H | 1940
0 6425 | | FASCIA GUTTER. |
| Activity Type:
DA
Project #
P3808 | DEVEL.
STREET, | | | | |
| pe:
1129-16
Sheet No.:
XO5 | | | | | |

DULUX FLOODED GUM R.CONC. TILT UP WALL PANELS


dulux blue ice quarter **Feature Wall**

dulux currency creek Metal Awning Column

DULUX MONDRIAN BLUE FEATURE WALL


"ZINCALUME TRIMDEK" __ METAL ROOF SHEETING

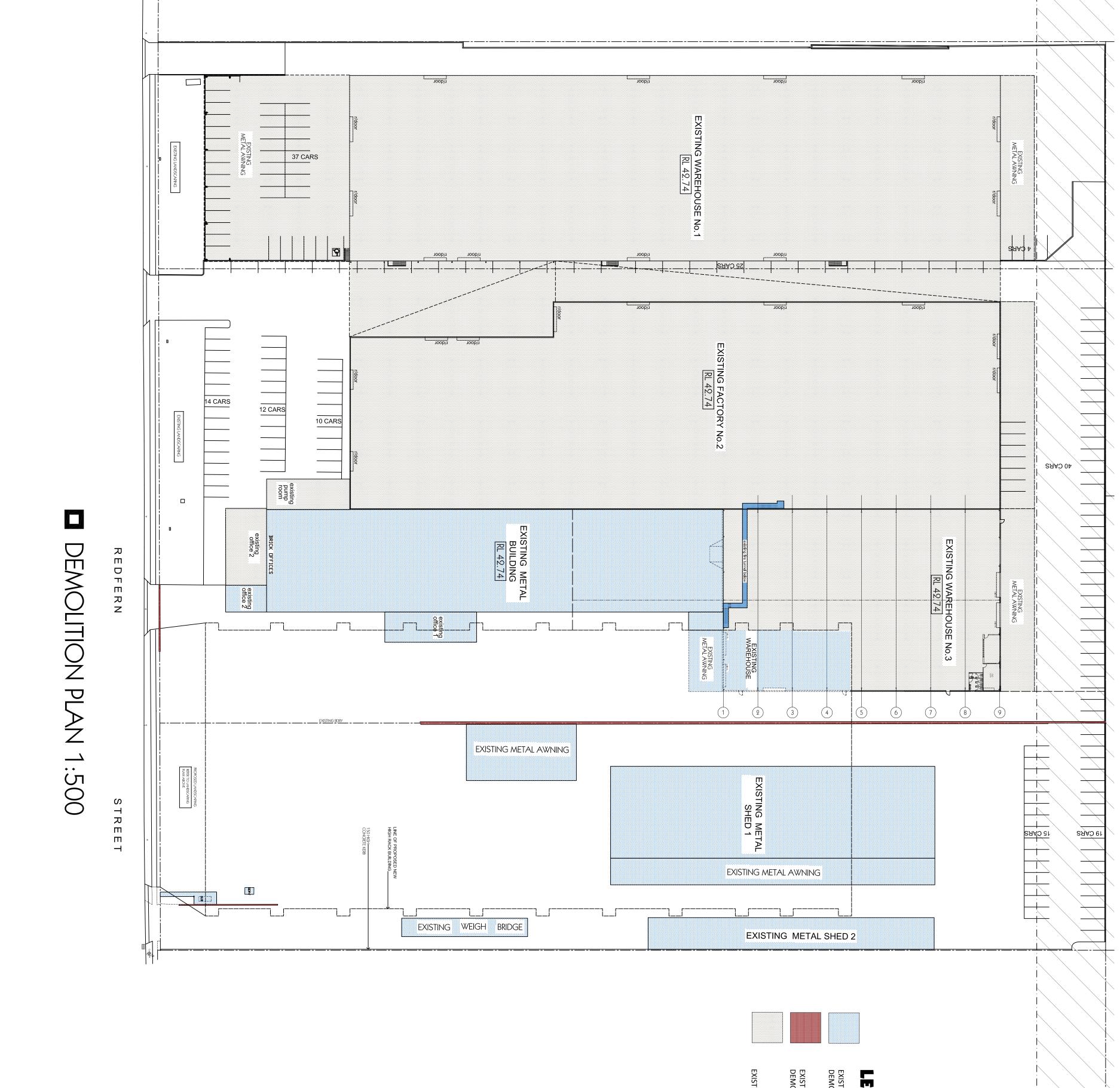
_ Fascia gutter.

laws and pia & Asso

r not be es Pty Ltd.

ervices to be located and verified by the Builder with relevant authorities before any building work come RIGHT: esign and the associated documents is subject to copyright laws and may not be uced in any form without written consent from Algorry, Zappia & Associates Pty Ltd.

Figured dimensions must be taken in preference to scaling.
 All boundary clearances must be verified by the surveyor prior to the commencement of any b
 Where engineering drawings are required such must take preference to this drawing.
 Stormwater to be discharged to Councils' requirements and AS 3500.3-1990.
 All services to be located and verified by the Builder with relevant authorities before any build


-2016 MC CZ 1) , -2016 3) F

> d by the Builder prior t intion of the designer inied by reduced levels

Description FOR DA

Date 10-08

A

Cons

ALGORR Building a Suite 4, Level 1, 84 B P.O. Box 825, Liverpo t 9602 3133 / 9602 0 e admin@algorryzappia.

| RECEND
Restance and
Restance and
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Restance
Re |
|--|
|--|

